/* Minetest Copyright (C) 2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "nodedef.h" #include "itemdef.h" #ifndef SERVER #include "client/tile.h" #include "mesh.h" #include #endif #include "log.h" #include "settings.h" #include "nameidmapping.h" #include "util/numeric.h" #include "util/serialize.h" #include "exceptions.h" #include "debug.h" #include "gamedef.h" #include // Used in applyTextureOverrides() /* NodeBox */ void NodeBox::reset() { type = NODEBOX_REGULAR; // default is empty fixed.clear(); // default is sign/ladder-like wall_top = aabb3f(-BS/2, BS/2-BS/16., -BS/2, BS/2, BS/2, BS/2); wall_bottom = aabb3f(-BS/2, -BS/2, -BS/2, BS/2, -BS/2+BS/16., BS/2); wall_side = aabb3f(-BS/2, -BS/2, -BS/2, -BS/2+BS/16., BS/2, BS/2); } void NodeBox::serialize(std::ostream &os, u16 protocol_version) const { int version = protocol_version >= 21 ? 2 : 1; writeU8(os, version); if (version == 1 && type == NODEBOX_LEVELED) writeU8(os, NODEBOX_FIXED); else writeU8(os, type); if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED) { writeU16(os, fixed.size()); for(std::vector::const_iterator i = fixed.begin(); i != fixed.end(); ++i) { writeV3F1000(os, i->MinEdge); writeV3F1000(os, i->MaxEdge); } } else if(type == NODEBOX_WALLMOUNTED) { writeV3F1000(os, wall_top.MinEdge); writeV3F1000(os, wall_top.MaxEdge); writeV3F1000(os, wall_bottom.MinEdge); writeV3F1000(os, wall_bottom.MaxEdge); writeV3F1000(os, wall_side.MinEdge); writeV3F1000(os, wall_side.MaxEdge); } } void NodeBox::deSerialize(std::istream &is) { int version = readU8(is); if(version < 1 || version > 2) throw SerializationError("unsupported NodeBox version"); reset(); type = (enum NodeBoxType)readU8(is); if(type == NODEBOX_FIXED || type == NODEBOX_LEVELED) { u16 fixed_count = readU16(is); while(fixed_count--) { aabb3f box; box.MinEdge = readV3F1000(is); box.MaxEdge = readV3F1000(is); fixed.push_back(box); } } else if(type == NODEBOX_WALLMOUNTED) { wall_top.MinEdge = readV3F1000(is); wall_top.MaxEdge = readV3F1000(is); wall_bottom.MinEdge = readV3F1000(is); wall_bottom.MaxEdge = readV3F1000(is); wall_side.MinEdge = readV3F1000(is); wall_side.MaxEdge = readV3F1000(is); } } /* TileDef */ void TileDef::serialize(std::ostream &os, u16 protocol_version) const { if (protocol_version >= 26) writeU8(os, 2); else if (protocol_version >= 17) writeU8(os, 1); else writeU8(os, 0); os<= 17) writeU8(os, backface_culling); if (protocol_version >= 26) { writeU8(os, tileable_horizontal); writeU8(os, tileable_vertical); } } void TileDef::deSerialize(std::istream &is) { int version = readU8(is); name = deSerializeString(is); animation.type = (TileAnimationType)readU8(is); animation.aspect_w = readU16(is); animation.aspect_h = readU16(is); animation.length = readF1000(is); if (version >= 1) backface_culling = readU8(is); if (version >= 2) { tileable_horizontal = readU8(is); tileable_vertical = readU8(is); } } /* SimpleSoundSpec serialization */ static void serializeSimpleSoundSpec(const SimpleSoundSpec &ss, std::ostream &os) { os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for(u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); writeU8(os, CF_SPECIAL_COUNT); for(u32 i = 0; i < CF_SPECIAL_COUNT; i++){ tiledef_special[i].serialize(os, protocol_version); } writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os< &result) const; virtual const ContentFeatures& get(const std::string &name) const; content_t allocateId(); virtual content_t set(const std::string &name, const ContentFeatures &def); virtual content_t allocateDummy(const std::string &name); virtual void updateAliases(IItemDefManager *idef); virtual void applyTextureOverrides(const std::string &override_filepath); virtual void updateTextures(IGameDef *gamedef, void (*progress_cbk)(void *progress_args, u32 progress, u32 max_progress), void *progress_cbk_args); void serialize(std::ostream &os, u16 protocol_version) const; void deSerialize(std::istream &is); inline virtual bool getNodeRegistrationStatus() const; inline virtual void setNodeRegistrationStatus(bool completed); virtual void pendNodeResolve(NodeResolver *nr); virtual bool cancelNodeResolveCallback(NodeResolver *nr); virtual void runNodeResolveCallbacks(); virtual void resetNodeResolveState(); private: void addNameIdMapping(content_t i, std::string name); #ifndef SERVER void fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type); #endif // Features indexed by id std::vector m_content_features; // A mapping for fast converting back and forth between names and ids NameIdMapping m_name_id_mapping; // Like m_name_id_mapping, but only from names to ids, and includes // item aliases too. Updated by updateAliases() // Note: Not serialized. std::map m_name_id_mapping_with_aliases; // A mapping from groups to a list of content_ts (and their levels) // that belong to it. Necessary for a direct lookup in getIds(). // Note: Not serialized. std::map m_group_to_items; // Next possibly free id content_t m_next_id; // NodeResolvers to callback once node registration has ended std::vector m_pending_resolve_callbacks; // True when all nodes have been registered bool m_node_registration_complete; }; CNodeDefManager::CNodeDefManager() { clear(); } CNodeDefManager::~CNodeDefManager() { #ifndef SERVER for (u32 i = 0; i < m_content_features.size(); i++) { ContentFeatures *f = &m_content_features[i]; for (u32 j = 0; j < 24; j++) { if (f->mesh_ptr[j]) f->mesh_ptr[j]->drop(); } } #endif } void CNodeDefManager::clear() { m_content_features.clear(); m_name_id_mapping.clear(); m_name_id_mapping_with_aliases.clear(); m_group_to_items.clear(); m_next_id = 0; resetNodeResolveState(); u32 initial_length = 0; initial_length = MYMAX(initial_length, CONTENT_UNKNOWN + 1); initial_length = MYMAX(initial_length, CONTENT_AIR + 1); initial_length = MYMAX(initial_length, CONTENT_IGNORE + 1); m_content_features.resize(initial_length); // Set CONTENT_UNKNOWN { ContentFeatures f; f.name = "unknown"; // Insert directly into containers content_t c = CONTENT_UNKNOWN; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_AIR { ContentFeatures f; f.name = "air"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_LIGHT; f.light_propagates = true; f.sunlight_propagates = true; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; f.floodable = true; f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_AIR; m_content_features[c] = f; addNameIdMapping(c, f.name); } // Set CONTENT_IGNORE { ContentFeatures f; f.name = "ignore"; f.drawtype = NDT_AIRLIKE; f.param_type = CPT_NONE; f.light_propagates = false; f.sunlight_propagates = false; f.walkable = false; f.pointable = false; f.diggable = false; f.buildable_to = true; // A way to remove accidental CONTENT_IGNOREs f.is_ground_content = true; // Insert directly into containers content_t c = CONTENT_IGNORE; m_content_features[c] = f; addNameIdMapping(c, f.name); } } IWritableNodeDefManager *CNodeDefManager::clone() { CNodeDefManager *mgr = new CNodeDefManager(); *mgr = *this; return mgr; } inline const ContentFeatures& CNodeDefManager::get(content_t c) const { return c < m_content_features.size() ? m_content_features[c] : m_content_features[CONTENT_UNKNOWN]; } inline const ContentFeatures& CNodeDefManager::get(const MapNode &n) const { return get(n.getContent()); } bool CNodeDefManager::getId(const std::string &name, content_t &result) const { std::map::const_iterator i = m_name_id_mapping_with_aliases.find(name); if(i == m_name_id_mapping_with_aliases.end()) return false; result = i->second; return true; } content_t CNodeDefManager::getId(const std::string &name) const { content_t id = CONTENT_IGNORE; getId(name, id); return id; } void CNodeDefManager::getIds(const std::string &name, std::set &result) const { //TimeTaker t("getIds", NULL, PRECISION_MICRO); if (name.substr(0,6) != "group:") { content_t id = CONTENT_IGNORE; if(getId(name, id)) result.insert(id); return; } std::string group = name.substr(6); std::map::const_iterator i = m_group_to_items.find(group); if (i == m_group_to_items.end()) return; const GroupItems &items = i->second; for (GroupItems::const_iterator j = items.begin(); j != items.end(); ++j) { if ((*j).second != 0) result.insert((*j).first); } //printf("getIds: %dus\n", t.stop()); } const ContentFeatures& CNodeDefManager::get(const std::string &name) const { content_t id = CONTENT_UNKNOWN; getId(name, id); return get(id); } // returns CONTENT_IGNORE if no free ID found content_t CNodeDefManager::allocateId() { for (content_t id = m_next_id; id >= m_next_id; // overflow? ++id) { while (id >= m_content_features.size()) { m_content_features.push_back(ContentFeatures()); } const ContentFeatures &f = m_content_features[id]; if (f.name == "") { m_next_id = id + 1; return id; } } // If we arrive here, an overflow occurred in id. // That means no ID was found return CONTENT_IGNORE; } // IWritableNodeDefManager content_t CNodeDefManager::set(const std::string &name, const ContentFeatures &def) { // Pre-conditions assert(name != ""); assert(name == def.name); // Don't allow redefining ignore (but allow air and unknown) if (name == "ignore") { warningstream << "NodeDefManager: Ignoring " "CONTENT_IGNORE redefinition"<first; std::map::iterator j = m_group_to_items.find(group_name); if (j == m_group_to_items.end()) { m_group_to_items[group_name].push_back( std::make_pair(id, i->second)); } else { GroupItems &items = j->second; items.push_back(std::make_pair(id, i->second)); } } return id; } content_t CNodeDefManager::allocateDummy(const std::string &name) { assert(name != ""); // Pre-condition ContentFeatures f; f.name = name; return set(name, f); } void CNodeDefManager::updateAliases(IItemDefManager *idef) { std::set all = idef->getAll(); m_name_id_mapping_with_aliases.clear(); for (std::set::iterator i = all.begin(); i != all.end(); ++i) { std::string name = *i; std::string convert_to = idef->getAlias(name); content_t id; if (m_name_id_mapping.getId(convert_to, id)) { m_name_id_mapping_with_aliases.insert( std::make_pair(name, id)); } } } void CNodeDefManager::applyTextureOverrides(const std::string &override_filepath) { infostream << "CNodeDefManager::applyTextureOverrides(): Applying " "overrides to textures from " << override_filepath << std::endl; std::ifstream infile(override_filepath.c_str()); std::string line; int line_c = 0; while (std::getline(infile, line)) { line_c++; if (trim(line) == "") continue; std::vector splitted = str_split(line, ' '); if (splitted.size() != 3) { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Syntax error" << std::endl; continue; } content_t id; if (!getId(splitted[0], id)) { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Unknown node \"" << splitted[0] << "\"" << std::endl; continue; } ContentFeatures &nodedef = m_content_features[id]; if (splitted[1] == "top") nodedef.tiledef[0].name = splitted[2]; else if (splitted[1] == "bottom") nodedef.tiledef[1].name = splitted[2]; else if (splitted[1] == "right") nodedef.tiledef[2].name = splitted[2]; else if (splitted[1] == "left") nodedef.tiledef[3].name = splitted[2]; else if (splitted[1] == "back") nodedef.tiledef[4].name = splitted[2]; else if (splitted[1] == "front") nodedef.tiledef[5].name = splitted[2]; else if (splitted[1] == "all" || splitted[1] == "*") for (int i = 0; i < 6; i++) nodedef.tiledef[i].name = splitted[2]; else if (splitted[1] == "sides") for (int i = 2; i < 6; i++) nodedef.tiledef[i].name = splitted[2]; else { errorstream << override_filepath << ":" << line_c << " Could not apply texture override \"" << line << "\": Unknown node side \"" << splitted[1] << "\"" << std::endl; continue; } } } void CNodeDefManager::updateTextures(IGameDef *gamedef, void (*progress_callback)(void *progress_args, u32 progress, u32 max_progress), void *progress_callback_args) { #ifndef SERVER infostream << "CNodeDefManager::updateTextures(): Updating " "textures in node definitions" << std::endl; ITextureSource *tsrc = gamedef->tsrc(); IShaderSource *shdsrc = gamedef->getShaderSource(); scene::ISceneManager* smgr = gamedef->getSceneManager(); scene::IMeshManipulator* meshmanip = smgr->getMeshManipulator(); bool new_style_water = g_settings->getBool("new_style_water"); bool connected_glass = g_settings->getBool("connected_glass"); bool opaque_water = g_settings->getBool("opaque_water"); bool enable_shaders = g_settings->getBool("enable_shaders"); bool enable_bumpmapping = g_settings->getBool("enable_bumpmapping"); bool enable_parallax_occlusion = g_settings->getBool("enable_parallax_occlusion"); bool enable_mesh_cache = g_settings->getBool("enable_mesh_cache"); bool enable_minimap = g_settings->getBool("enable_minimap"); std::string leaves_style = g_settings->get("leaves_style"); bool use_normal_texture = enable_shaders && (enable_bumpmapping || enable_parallax_occlusion); u32 size = m_content_features.size(); for (u32 i = 0; i < size; i++) { ContentFeatures *f = &m_content_features[i]; // minimap pixel color - the average color of a texture if (enable_minimap && f->tiledef[0].name != "") f->minimap_color = tsrc->getTextureAverageColor(f->tiledef[0].name); // Figure out the actual tiles to use TileDef tiledef[6]; for (u32 j = 0; j < 6; j++) { tiledef[j] = f->tiledef[j]; if (tiledef[j].name == "") tiledef[j].name = "unknown_node.png"; } bool is_liquid = false; bool is_water_surface = false; u8 material_type = (f->alpha == 255) ? TILE_MATERIAL_BASIC : TILE_MATERIAL_ALPHA; switch (f->drawtype) { default: case NDT_NORMAL: f->solidness = 2; break; case NDT_AIRLIKE: f->solidness = 0; break; case NDT_LIQUID: assert(f->liquid_type == LIQUID_SOURCE); if (opaque_water) f->alpha = 255; f->solidness = new_style_water ? 0 : 1; is_liquid = true; break; case NDT_FLOWINGLIQUID: assert(f->liquid_type == LIQUID_FLOWING); f->solidness = 0; if (opaque_water) f->alpha = 255; is_liquid = true; break; case NDT_GLASSLIKE: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED: f->solidness = 0; f->visual_solidness = 1; break; case NDT_GLASSLIKE_FRAMED_OPTIONAL: f->solidness = 0; f->visual_solidness = 1; f->drawtype = connected_glass ? NDT_GLASSLIKE_FRAMED : NDT_GLASSLIKE; break; case NDT_ALLFACES: f->solidness = 0; f->visual_solidness = 1; break; case NDT_ALLFACES_OPTIONAL: if (leaves_style == "fancy") { f->drawtype = NDT_ALLFACES; f->solidness = 0; f->visual_solidness = 1; } else if (leaves_style == "simple") { for (u32 j = 0; j < 6; j++) { if (f->tiledef_special[j].name != "") tiledef[j].name = f->tiledef_special[j].name; } f->drawtype = NDT_GLASSLIKE; f->solidness = 0; f->visual_solidness = 1; } else { f->drawtype = NDT_NORMAL; f->solidness = 2; for (u32 i = 0; i < 6; i++) tiledef[i].name += std::string("^[noalpha"); } if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_LEAVES; break; case NDT_PLANTLIKE: f->solidness = 0; if (f->waving == 1) material_type = TILE_MATERIAL_WAVING_PLANTS; break; case NDT_FIRELIKE: f->solidness = 0; break; case NDT_MESH: f->solidness = 0; break; case NDT_TORCHLIKE: case NDT_SIGNLIKE: case NDT_FENCELIKE: case NDT_RAILLIKE: case NDT_NODEBOX: f->solidness = 0; break; } if (is_liquid) { material_type = (f->alpha == 255) ? TILE_MATERIAL_LIQUID_OPAQUE : TILE_MATERIAL_LIQUID_TRANSPARENT; if (f->name == "default:water_source") is_water_surface = true; } u32 tile_shader[6]; for (u16 j = 0; j < 6; j++) { tile_shader[j] = shdsrc->getShader("nodes_shader", material_type, f->drawtype); } if (is_water_surface) { tile_shader[0] = shdsrc->getShader("water_surface_shader", material_type, f->drawtype); } // Tiles (fill in f->tiles[]) for (u16 j = 0; j < 6; j++) { fillTileAttribs(tsrc, &f->tiles[j], &tiledef[j], tile_shader[j], use_normal_texture, f->tiledef[j].backface_culling, f->alpha, material_type); } // Special tiles (fill in f->special_tiles[]) for (u16 j = 0; j < CF_SPECIAL_COUNT; j++) { fillTileAttribs(tsrc, &f->special_tiles[j], &f->tiledef_special[j], tile_shader[j], use_normal_texture, f->tiledef_special[j].backface_culling, f->alpha, material_type); } if ((f->drawtype == NDT_MESH) && (f->mesh != "")) { // Meshnode drawtype // Read the mesh and apply scale f->mesh_ptr[0] = gamedef->getMesh(f->mesh); if (f->mesh_ptr[0]){ v3f scale = v3f(1.0, 1.0, 1.0) * BS * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } } else if ((f->drawtype == NDT_NODEBOX) && ((f->node_box.type == NODEBOX_REGULAR) || (f->node_box.type == NODEBOX_FIXED)) && (!f->node_box.fixed.empty())) { //Convert regular nodebox nodes to meshnodes //Change the drawtype and apply scale f->drawtype = NDT_MESH; f->mesh_ptr[0] = convertNodeboxNodeToMesh(f); v3f scale = v3f(1.0, 1.0, 1.0) * f->visual_scale; scaleMesh(f->mesh_ptr[0], scale); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } //Cache 6dfacedir and wallmounted rotated clones of meshes if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_FACEDIR)) { for (u16 j = 1; j < 24; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], j); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } } else if (enable_mesh_cache && f->mesh_ptr[0] && (f->param_type_2 == CPT2_WALLMOUNTED)) { static const u8 wm_to_6d[6] = {20, 0, 16+1, 12+3, 8, 4+2}; for (u16 j = 1; j < 6; j++) { f->mesh_ptr[j] = cloneMesh(f->mesh_ptr[0]); rotateMeshBy6dFacedir(f->mesh_ptr[j], wm_to_6d[j]); recalculateBoundingBox(f->mesh_ptr[j]); meshmanip->recalculateNormals(f->mesh_ptr[j], true, false); } rotateMeshBy6dFacedir(f->mesh_ptr[0], wm_to_6d[0]); recalculateBoundingBox(f->mesh_ptr[0]); meshmanip->recalculateNormals(f->mesh_ptr[0], true, false); } progress_callback(progress_callback_args, i, size); } #endif } #ifndef SERVER void CNodeDefManager::fillTileAttribs(ITextureSource *tsrc, TileSpec *tile, TileDef *tiledef, u32 shader_id, bool use_normal_texture, bool backface_culling, u8 alpha, u8 material_type) { tile->shader_id = shader_id; tile->texture = tsrc->getTextureForMesh(tiledef->name, &tile->texture_id); tile->alpha = alpha; tile->material_type = material_type; // Normal texture and shader flags texture if (use_normal_texture) { tile->normal_texture = tsrc->getNormalTexture(tiledef->name); } tile->flags_texture = tsrc->getShaderFlagsTexture(tile->normal_texture ? true : false); // Material flags tile->material_flags = 0; if (backface_culling) tile->material_flags |= MATERIAL_FLAG_BACKFACE_CULLING; if (tiledef->animation.type == TAT_VERTICAL_FRAMES) tile->material_flags |= MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; if (tiledef->tileable_horizontal) tile->material_flags |= MATERIAL_FLAG_TILEABLE_HORIZONTAL; if (tiledef->tileable_vertical) tile->material_flags |= MATERIAL_FLAG_TILEABLE_VERTICAL; // Animation parameters int frame_count = 1; if (tile->material_flags & MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES) { // Get texture size to determine frame count by aspect ratio v2u32 size = tile->texture->getOriginalSize(); int frame_height = (float)size.X / (float)tiledef->animation.aspect_w * (float)tiledef->animation.aspect_h; frame_count = size.Y / frame_height; int frame_length_ms = 1000.0 * tiledef->animation.length / frame_count; tile->animation_frame_count = frame_count; tile->animation_frame_length_ms = frame_length_ms; } if (frame_count == 1) { tile->material_flags &= ~MATERIAL_FLAG_ANIMATION_VERTICAL_FRAMES; } else { std::ostringstream os(std::ios::binary); tile->frames.resize(frame_count); for (int i = 0; i < frame_count; i++) { FrameSpec frame; os.str(""); os << tiledef->name << "^[verticalframe:" << frame_count << ":" << i; frame.texture = tsrc->getTextureForMesh(os.str(), &frame.texture_id); if (tile->normal_texture) frame.normal_texture = tsrc->getNormalTexture(os.str()); frame.flags_texture = tile->flags_texture; tile->frames[i] = frame; } } } #endif void CNodeDefManager::serialize(std::ostream &os, u16 protocol_version) const { writeU8(os, 1); // version u16 count = 0; std::ostringstream os2(std::ios::binary); for (u32 i = 0; i < m_content_features.size(); i++) { if (i == CONTENT_IGNORE || i == CONTENT_AIR || i == CONTENT_UNKNOWN) continue; const ContentFeatures *f = &m_content_features[i]; if (f->name == "") continue; writeU16(os2, i); // Wrap it in a string to allow different lengths without // strict version incompatibilities std::ostringstream wrapper_os(std::ios::binary); f->serialize(wrapper_os, protocol_version); os2<= m_content_features.size()) m_content_features.resize((u32)(i) + 1); m_content_features[i] = f; addNameIdMapping(i, f.name); verbosestream << "deserialized " << f.name << std::endl; } } void CNodeDefManager::addNameIdMapping(content_t i, std::string name) { m_name_id_mapping.set(i, name); m_name_id_mapping_with_aliases.insert(std::make_pair(name, i)); } IWritableNodeDefManager *createNodeDefManager() { return new CNodeDefManager(); } //// Serialization of old ContentFeatures formats void ContentFeatures::serializeOld(std::ostream &os, u16 protocol_version) const { if (protocol_version == 13) { writeU8(os, 5); // version os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os< 13 && protocol_version < 24) { writeU8(os, 6); // version os<first); writeS16(os, i->second); } writeU8(os, drawtype); writeF1000(os, visual_scale); writeU8(os, 6); for (u32 i = 0; i < 6; i++) tiledef[i].serialize(os, protocol_version); //CF_SPECIAL_COUNT = 2 before cf ver. 7 and protocol ver. 24 writeU8(os, 2); for (u32 i = 0; i < 2; i++) tiledef_special[i].serialize(os, protocol_version); writeU8(os, alpha); writeU8(os, post_effect_color.getAlpha()); writeU8(os, post_effect_color.getRed()); writeU8(os, post_effect_color.getGreen()); writeU8(os, post_effect_color.getBlue()); writeU8(os, param_type); writeU8(os, param_type_2); writeU8(os, is_ground_content); writeU8(os, light_propagates); writeU8(os, sunlight_propagates); writeU8(os, walkable); writeU8(os, pointable); writeU8(os, diggable); writeU8(os, climbable); writeU8(os, buildable_to); os<m_ndef = this; if (m_node_registration_complete) nr->nodeResolveInternal(); else m_pending_resolve_callbacks.push_back(nr); } bool CNodeDefManager::cancelNodeResolveCallback(NodeResolver *nr) { size_t len = m_pending_resolve_callbacks.size(); for (size_t i = 0; i != len; i++) { if (nr != m_pending_resolve_callbacks[i]) continue; len--; m_pending_resolve_callbacks[i] = m_pending_resolve_callbacks[len]; m_pending_resolve_callbacks.resize(len); return true; } return false; } void CNodeDefManager::runNodeResolveCallbacks() { for (size_t i = 0; i != m_pending_resolve_callbacks.size(); i++) { NodeResolver *nr = m_pending_resolve_callbacks[i]; nr->nodeResolveInternal(); } m_pending_resolve_callbacks.clear(); } void CNodeDefManager::resetNodeResolveState() { m_node_registration_complete = false; m_pending_resolve_callbacks.clear(); } //// //// NodeResolver //// NodeResolver::NodeResolver() { m_ndef = NULL; m_nodenames_idx = 0; m_nnlistsizes_idx = 0; m_resolve_done = false; m_nodenames.reserve(16); m_nnlistsizes.reserve(4); } NodeResolver::~NodeResolver() { if (!m_resolve_done && m_ndef) m_ndef->cancelNodeResolveCallback(this); } void NodeResolver::nodeResolveInternal() { m_nodenames_idx = 0; m_nnlistsizes_idx = 0; resolveNodeNames(); m_resolve_done = true; m_nodenames.clear(); m_nnlistsizes.clear(); } bool NodeResolver::getIdFromNrBacklog(content_t *result_out, const std::string &node_alt, content_t c_fallback) { if (m_nodenames_idx == m_nodenames.size()) { *result_out = c_fallback; errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string name = m_nodenames[m_nodenames_idx++]; bool success = m_ndef->getId(name, c); if (!success && node_alt != "") { name = node_alt; success = m_ndef->getId(name, c); } if (!success) { errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; c = c_fallback; } *result_out = c; return success; } bool NodeResolver::getIdsFromNrBacklog(std::vector *result_out, bool all_required, content_t c_fallback) { bool success = true; if (m_nnlistsizes_idx == m_nnlistsizes.size()) { errorstream << "NodeResolver: no more node lists" << std::endl; return false; } size_t length = m_nnlistsizes[m_nnlistsizes_idx++]; while (length--) { if (m_nodenames_idx == m_nodenames.size()) { errorstream << "NodeResolver: no more nodes in list" << std::endl; return false; } content_t c; std::string &name = m_nodenames[m_nodenames_idx++]; if (name.substr(0,6) != "group:") { if (m_ndef->getId(name, c)) { result_out->push_back(c); } else if (all_required) { errorstream << "NodeResolver: failed to resolve node name '" << name << "'." << std::endl; result_out->push_back(c_fallback); success = false; } } else { std::set cids; std::set::iterator it; m_ndef->getIds(name, cids); for (it = cids.begin(); it != cids.end(); ++it) result_out->push_back(*it); } } return success; }