/* Minetest Copyright (C) 2010-2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifndef UTIL_SERIALIZE_HEADER #define UTIL_SERIALIZE_HEADER #include "../irrlichttypes_bloated.h" #include "config.h" #if HAVE_ENDIAN_H #include #include // for memcpy #endif #include #include #define FIXEDPOINT_FACTOR 1000.0f #define FIXEDPOINT_INVFACTOR (1.0f/FIXEDPOINT_FACTOR) #if HAVE_ENDIAN_H // use machine native byte swapping routines // Note: memcpy below is optimized out by modern compilers inline void writeU64(u8* data, u64 i) { u64 val = htobe64(i); memcpy(data, &val, 8); } inline void writeU32(u8* data, u32 i) { u32 val = htobe32(i); memcpy(data, &val, 4); } inline void writeU16(u8* data, u16 i) { u16 val = htobe16(i); memcpy(data, &val, 2); } inline u64 readU64(const u8* data) { u64 val; memcpy(&val, data, 8); return be64toh(val); } inline u32 readU32(const u8* data) { u32 val; memcpy(&val, data, 4); return be32toh(val); } inline u16 readU16(const u8* data) { u16 val; memcpy(&val, data, 2); return be16toh(val); } #else // generic byte-swapping implementation inline void writeU64(u8 *data, u64 i) { data[0] = ((i>>56)&0xff); data[1] = ((i>>48)&0xff); data[2] = ((i>>40)&0xff); data[3] = ((i>>32)&0xff); data[4] = ((i>>24)&0xff); data[5] = ((i>>16)&0xff); data[6] = ((i>> 8)&0xff); data[7] = ((i>> 0)&0xff); } inline void writeU32(u8 *data, u32 i) { data[0] = ((i>>24)&0xff); data[1] = ((i>>16)&0xff); data[2] = ((i>> 8)&0xff); data[3] = ((i>> 0)&0xff); } inline void writeU16(u8 *data, u16 i) { data[0] = ((i>> 8)&0xff); data[1] = ((i>> 0)&0xff); } inline u64 readU64(const u8 *data) { return ((u64)data[0]<<56) | ((u64)data[1]<<48) | ((u64)data[2]<<40) | ((u64)data[3]<<32) | ((u64)data[4]<<24) | ((u64)data[5]<<16) | ((u64)data[6]<<8) | ((u64)data[7]<<0); } inline u32 readU32(const u8 *data) { return (data[0]<<24) | (data[1]<<16) | (data[2]<<8) | (data[3]<<0); } inline u16 readU16(const u8 *data) { return (data[0]<<8) | (data[1]<<0); } #endif inline void writeU8(u8 *data, u8 i) { data[0] = ((i>> 0)&0xff); } inline u8 readU8(const u8 *data) { return (data[0]<<0); } inline void writeS32(u8 *data, s32 i){ writeU32(data, (u32)i); } inline s32 readS32(const u8 *data){ return (s32)readU32(data); } inline void writeS16(u8 *data, s16 i){ writeU16(data, (u16)i); } inline s16 readS16(const u8 *data){ return (s16)readU16(data); } inline void writeS8(u8 *data, s8 i){ writeU8(data, (u8)i); } inline s8 readS8(const u8 *data){ return (s8)readU8(data); } inline void writeF1000(u8 *data, f32 i){ writeS32(data, i*FIXEDPOINT_FACTOR); } inline f32 readF1000(const u8 *data){ return (f32)readS32(data)*FIXEDPOINT_INVFACTOR; } inline void writeV3S32(u8 *data, v3s32 p) { writeS32(&data[0], p.X); writeS32(&data[4], p.Y); writeS32(&data[8], p.Z); } inline v3s32 readV3S32(const u8 *data) { v3s32 p; p.X = readS32(&data[0]); p.Y = readS32(&data[4]); p.Z = readS32(&data[8]); return p; } inline void writeV3F1000(u8 *data, v3f p) { writeF1000(&data[0], p.X); writeF1000(&data[4], p.Y); writeF1000(&data[8], p.Z); } inline v3f readV3F1000(const u8 *data) { v3f p; p.X = (float)readF1000(&data[0]); p.Y = (float)readF1000(&data[4]); p.Z = (float)readF1000(&data[8]); return p; } inline void writeV2F1000(u8 *data, v2f p) { writeF1000(&data[0], p.X); writeF1000(&data[4], p.Y); } inline v2f readV2F1000(const u8 *data) { v2f p; p.X = (float)readF1000(&data[0]); p.Y = (float)readF1000(&data[4]); return p; } inline void writeV2S16(u8 *data, v2s16 p) { writeS16(&data[0], p.X); writeS16(&data[2], p.Y); } inline v2s16 readV2S16(const u8 *data) { v2s16 p; p.X = readS16(&data[0]); p.Y = readS16(&data[2]); return p; } inline void writeV2S32(u8 *data, v2s32 p) { writeS32(&data[0], p.X); writeS32(&data[4], p.Y); } inline v2s32 readV2S32(const u8 *data) { v2s32 p; p.X = readS32(&data[0]); p.Y = readS32(&data[4]); return p; } inline void writeV3S16(u8 *data, v3s16 p) { writeS16(&data[0], p.X); writeS16(&data[2], p.Y); writeS16(&data[4], p.Z); } inline v3s16 readV3S16(const u8 *data) { v3s16 p; p.X = readS16(&data[0]); p.Y = readS16(&data[2]); p.Z = readS16(&data[4]); return p; } inline void writeARGB8(u8 *data, video::SColor p) { writeU32(data, p.color); } inline video::SColor readARGB8(const u8 *data) { video::SColor p(readU32(data)); return p; } /* The above stuff directly interfaced to iostream */ inline void writeU8(std::ostream &os, u8 p) { char buf[1]; writeU8((u8*)buf, p); os.write(buf, 1); } inline u8 readU8(std::istream &is) { char buf[1] = {0}; is.read(buf, 1); return readU8((u8*)buf); } inline void writeU16(std::ostream &os, u16 p) { char buf[2]; writeU16((u8*)buf, p); os.write(buf, 2); } inline u16 readU16(std::istream &is) { char buf[2] = {0}; is.read(buf, 2); return readU16((u8*)buf); } inline void writeU32(std::ostream &os, u32 p) { char buf[4]; writeU32((u8*)buf, p); os.write(buf, 4); } inline u32 readU32(std::istream &is) { char buf[4] = {0}; is.read(buf, 4); return readU32((u8*)buf); } inline void writeS32(std::ostream &os, s32 p) { writeU32(os, (u32) p); } inline s32 readS32(std::istream &is) { return (s32)readU32(is); } inline void writeS16(std::ostream &os, s16 p) { writeU16(os, (u16) p); } inline s16 readS16(std::istream &is) { return (s16)readU16(is); } inline void writeS8(std::ostream &os, s8 p) { writeU8(os, (u8) p); } inline s8 readS8(std::istream &is) { return (s8)readU8(is); } inline void writeF1000(std::ostream &os, f32 p) { char buf[4]; writeF1000((u8*)buf, p); os.write(buf, 4); } inline f32 readF1000(std::istream &is) { char buf[4] = {0}; is.read(buf, 4); return readF1000((u8*)buf); } inline void writeV3F1000(std::ostream &os, v3f p) { char buf[12]; writeV3F1000((u8*)buf, p); os.write(buf, 12); } inline v3f readV3F1000(std::istream &is) { char buf[12]; is.read(buf, 12); return readV3F1000((u8*)buf); } inline void writeV2F1000(std::ostream &os, v2f p) { char buf[8]; writeV2F1000((u8*)buf, p); os.write(buf, 8); } inline v2f readV2F1000(std::istream &is) { char buf[8] = {0}; is.read(buf, 8); return readV2F1000((u8*)buf); } inline void writeV2S16(std::ostream &os, v2s16 p) { char buf[4]; writeV2S16((u8*)buf, p); os.write(buf, 4); } inline v2s16 readV2S16(std::istream &is) { char buf[4] = {0}; is.read(buf, 4); return readV2S16((u8*)buf); } inline void writeV2S32(std::ostream &os, v2s32 p) { char buf[8]; writeV2S32((u8*)buf, p); os.write(buf, 8); } inline v2s32 readV2S32(std::istream &is) { char buf[8] = {0}; is.read(buf, 8); return readV2S32((u8*)buf); } inline void writeV3S16(std::ostream &os, v3s16 p) { char buf[6]; writeV3S16((u8*)buf, p); os.write(buf, 6); } inline v3s16 readV3S16(std::istream &is) { char buf[6] = {0}; is.read(buf, 6); return readV3S16((u8*)buf); } inline void writeARGB8(std::ostream &os, video::SColor p) { char buf[4]; writeARGB8((u8*)buf, p); os.write(buf, 4); } inline video::SColor readARGB8(std::istream &is) { char buf[4] = {0}; is.read(buf, 4); return readARGB8((u8*)buf); } /* More serialization stuff */ // Creates a string with the length as the first two bytes std::string serializeString(const std::string &plain); // Creates a string with the length as the first two bytes from wide string std::string serializeWideString(const std::wstring &plain); // Reads a string with the length as the first two bytes std::string deSerializeString(std::istream &is); // Reads a wide string with the length as the first two bytes std::wstring deSerializeWideString(std::istream &is); // Creates a string with the length as the first four bytes std::string serializeLongString(const std::string &plain); // Reads a string with the length as the first four bytes std::string deSerializeLongString(std::istream &is); // Creates a string encoded in JSON format (almost equivalent to a C string literal) std::string serializeJsonString(const std::string &plain); // Reads a string encoded in JSON format std::string deSerializeJsonString(std::istream &is); // Creates a string containing comma delimited values of a struct whose layout is // described by the parameter format bool serializeStructToString(std::string *out, std::string format, void *value); // Reads a comma delimited string of values into a struct whose layout is // decribed by the parameter format bool deSerializeStringToStruct(std::string valstr, std::string format, void *out, size_t olen); #endif