/* Minetest Copyright (C) 2013 celeron55, Perttu Ahola This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "particles.h" #include #include #include "client.h" #include "collision.h" #include "client/content_cao.h" #include "client/clientevent.h" #include "client/renderingengine.h" #include "util/numeric.h" #include "light.h" #include "localplayer.h" #include "environment.h" #include "clientmap.h" #include "mapnode.h" #include "nodedef.h" #include "client.h" #include "settings.h" #include "profiler.h" ClientParticleTexture::ClientParticleTexture(const ServerParticleTexture& p, ITextureSource *tsrc) { tex = p; // note: getTextureForMesh not needed here because we don't use texture filtering ref = tsrc->getTexture(p.string); } /* Particle */ Particle::Particle( const ParticleParameters &p, const ClientParticleTexRef &texture, v2f texpos, v2f texsize, video::SColor color, ParticleSpawner *parent, std::unique_ptr owned_texture ) : m_expiration(p.expirationtime), m_base_color(color), m_texture(texture), m_texpos(texpos), m_texsize(texsize), m_pos(p.pos), m_velocity(p.vel), m_acceleration(p.acc), m_p(p), m_parent(parent), m_owned_texture(std::move(owned_texture)) { } Particle::~Particle() { if (m_buffer) m_buffer->release(m_index); } bool Particle::attachToBuffer(ParticleBuffer *buffer) { auto index_opt = buffer->allocate(); if (index_opt.has_value()) { m_index = index_opt.value(); m_buffer = buffer; return true; } return false; } void Particle::step(float dtime, ClientEnvironment *env) { m_time += dtime; // apply drag (not handled by collisionMoveSimple) and brownian motion v3f av = vecAbsolute(m_velocity); av -= av * (m_p.drag * dtime); m_velocity = av*vecSign(m_velocity) + v3f(m_p.jitter.pickWithin())*dtime; if (m_p.collisiondetection) { aabb3f box(v3f(-m_p.size / 2.0f), v3f(m_p.size / 2.0f)); v3f p_pos = m_pos * BS; v3f p_velocity = m_velocity * BS; collisionMoveResult r = collisionMoveSimple(env, env->getGameDef(), BS * 0.5f, box, 0.0f, dtime, &p_pos, &p_velocity, m_acceleration * BS, nullptr, m_p.object_collision); f32 bounciness = m_p.bounce.pickWithin(); if (r.collides && (m_p.collision_removal || bounciness > 0)) { if (m_p.collision_removal) { // force expiration of the particle m_expiration = -1.0f; } else if (bounciness > 0) { /* cheap way to get a decent bounce effect is to only invert the * largest component of the velocity vector, so e.g. you don't * have a rock immediately bounce back in your face when you try * to skip it across the water (as would happen if we simply * downscaled and negated the velocity vector). this means * bounciness will work properly for cubic objects, but meshes * with diagonal angles and entities will not yield the correct * visual. this is probably unavoidable */ if (av.Y > av.X && av.Y > av.Z) { m_velocity.Y = -(m_velocity.Y * bounciness); } else if (av.X > av.Y && av.X > av.Z) { m_velocity.X = -(m_velocity.X * bounciness); } else if (av.Z > av.Y && av.Z > av.X) { m_velocity.Z = -(m_velocity.Z * bounciness); } else { // well now we're in a bit of a pickle m_velocity = -(m_velocity * bounciness); } } } else { m_velocity = p_velocity / BS; } m_pos = p_pos / BS; } else { // apply velocity and acceleration to position m_pos += (m_velocity + m_acceleration * 0.5f * dtime) * dtime; // apply acceleration to velocity m_velocity += m_acceleration * dtime; } if (m_p.animation.type != TAT_NONE) { m_animation_time += dtime; int frame_length_i = 0; m_p.animation.determineParams( m_texture.ref->getSize(), NULL, &frame_length_i, NULL); float frame_length = frame_length_i / 1000.0; while (m_animation_time > frame_length) { m_animation_frame++; m_animation_time -= frame_length; } } // animate particle alpha in accordance with settings float alpha = 1.f; if (m_texture.tex != nullptr) alpha = m_texture.tex -> alpha.blend(m_time / (m_expiration+0.1f)); // Update lighting auto col = updateLight(env); col.setAlpha(255 * alpha); // Update model updateVertices(env, col); } video::SColor Particle::updateLight(ClientEnvironment *env) { u8 light = 0; bool pos_ok; v3s16 p = v3s16( floor(m_pos.X+0.5), floor(m_pos.Y+0.5), floor(m_pos.Z+0.5) ); MapNode n = env->getClientMap().getNode(p, &pos_ok); if (pos_ok) light = n.getLightBlend(env->getDayNightRatio(), env->getGameDef()->ndef()->getLightingFlags(n)); else light = blend_light(env->getDayNightRatio(), LIGHT_SUN, 0); u8 m_light = decode_light(light + m_p.glow); return video::SColor(255, m_light * m_base_color.getRed() / 255, m_light * m_base_color.getGreen() / 255, m_light * m_base_color.getBlue() / 255); } void Particle::updateVertices(ClientEnvironment *env, video::SColor color) { f32 tx0, tx1, ty0, ty1; v2f scale; if (!m_buffer) return; video::S3DVertex *vertices = m_buffer->getVertices(m_index); if (m_texture.tex != nullptr) scale = m_texture.tex -> scale.blend(m_time / (m_expiration+0.1)); else scale = v2f(1.f, 1.f); if (m_p.animation.type != TAT_NONE) { const v2u32 texsize = m_texture.ref->getSize(); v2f texcoord, framesize_f; v2u32 framesize; texcoord = m_p.animation.getTextureCoords(texsize, m_animation_frame); m_p.animation.determineParams(texsize, NULL, NULL, &framesize); framesize_f = v2f(framesize.X / (float) texsize.X, framesize.Y / (float) texsize.Y); tx0 = m_texpos.X + texcoord.X; tx1 = m_texpos.X + texcoord.X + framesize_f.X * m_texsize.X; ty0 = m_texpos.Y + texcoord.Y; ty1 = m_texpos.Y + texcoord.Y + framesize_f.Y * m_texsize.Y; } else { tx0 = m_texpos.X; tx1 = m_texpos.X + m_texsize.X; ty0 = m_texpos.Y; ty1 = m_texpos.Y + m_texsize.Y; } auto half = m_p.size * .5f, hx = half * scale.X, hy = half * scale.Y; vertices[0] = video::S3DVertex(-hx, -hy, 0, 0, 0, 0, color, tx0, ty1); vertices[1] = video::S3DVertex(hx, -hy, 0, 0, 0, 0, color, tx1, ty1); vertices[2] = video::S3DVertex(hx, hy, 0, 0, 0, 0, color, tx1, ty0); vertices[3] = video::S3DVertex(-hx, hy, 0, 0, 0, 0, color, tx0, ty0); // Update position -- see #10398 auto *player = env->getLocalPlayer(); v3s16 camera_offset = env->getCameraOffset(); for (u16 i = 0; i < 4; i++) { video::S3DVertex &vertex = vertices[i]; if (m_p.vertical) { v3f ppos = player->getPosition() / BS; vertex.Pos.rotateXZBy(std::atan2(ppos.Z - m_pos.Z, ppos.X - m_pos.X) / core::DEGTORAD + 90); } else { vertex.Pos.rotateYZBy(player->getPitch()); vertex.Pos.rotateXZBy(player->getYaw()); } vertex.Pos += m_pos * BS - intToFloat(camera_offset, BS); } } /* ParticleSpawner */ ParticleSpawner::ParticleSpawner( LocalPlayer *player, const ParticleSpawnerParameters ¶ms, u16 attached_id, std::vector &&texpool, ParticleManager *p_manager ) : m_active(0), m_particlemanager(p_manager), m_time(0.0f), m_player(player), p(params), m_texpool(std::move(texpool)), m_attached_id(attached_id) { m_spawntimes.reserve(p.amount + 1); for (u16 i = 0; i <= p.amount; i++) { float spawntime = myrand_float() * p.time; m_spawntimes.push_back(spawntime); } size_t max_particles = 0; // maximum number of particles likely to be visible at any given time if (p.time != 0) { auto maxGenerations = p.time / std::min(p.exptime.start.min, p.exptime.end.min); max_particles = p.amount / maxGenerations; } else { auto longestLife = std::max(p.exptime.start.max, p.exptime.end.max); max_particles = p.amount * longestLife; } p_manager->reserveParticleSpace(max_particles * 1.2); } namespace { GenericCAO *findObjectByID(ClientEnvironment *env, u16 id) { if (id == 0) return nullptr; return env->getGenericCAO(id); } } void ParticleSpawner::spawnParticle(ClientEnvironment *env, float radius, const core::matrix4 *attached_absolute_pos_rot_matrix) { float fac = 0; if (p.time != 0) { // ensure safety from divide-by-zeroes fac = m_time / (p.time+0.1f); } auto r_pos = p.pos.blend(fac); auto r_vel = p.vel.blend(fac); auto r_acc = p.acc.blend(fac); auto r_drag = p.drag.blend(fac); auto r_radius = p.radius.blend(fac); auto r_jitter = p.jitter.blend(fac); auto r_bounce = p.bounce.blend(fac); v3f attractor_origin = p.attractor_origin.blend(fac); v3f attractor_direction = p.attractor_direction.blend(fac); auto attractor_obj = findObjectByID(env, p.attractor_attachment); auto attractor_direction_obj = findObjectByID(env, p.attractor_direction_attachment); auto r_exp = p.exptime.blend(fac); auto r_size = p.size.blend(fac); auto r_attract = p.attract.blend(fac); auto attract = r_attract.pickWithin(); v3f ppos = m_player->getPosition() / BS; v3f pos = r_pos.pickWithin(); v3f sphere_radius = r_radius.pickWithin(); // Need to apply this first or the following check // will be wrong for attached spawners if (attached_absolute_pos_rot_matrix) { pos *= BS; attached_absolute_pos_rot_matrix->transformVect(pos); pos /= BS; v3s16 camera_offset = m_particlemanager->m_env->getCameraOffset(); pos.X += camera_offset.X; pos.Y += camera_offset.Y; pos.Z += camera_offset.Z; } if (pos.getDistanceFromSQ(ppos) > radius*radius) return; // Parameters for the single particle we're about to spawn ParticleParameters pp; pp.pos = pos; pp.vel = r_vel.pickWithin(); pp.acc = r_acc.pickWithin(); pp.drag = r_drag.pickWithin(); pp.jitter = r_jitter; pp.bounce = r_bounce; if (attached_absolute_pos_rot_matrix) { // Apply attachment rotation attached_absolute_pos_rot_matrix->rotateVect(pp.vel); attached_absolute_pos_rot_matrix->rotateVect(pp.acc); } if (attractor_obj) attractor_origin += attractor_obj->getPosition() / BS; if (attractor_direction_obj) { auto *attractor_absolute_pos_rot_matrix = attractor_direction_obj->getAbsolutePosRotMatrix(); if (attractor_absolute_pos_rot_matrix) attractor_absolute_pos_rot_matrix->rotateVect(attractor_direction); } pp.expirationtime = r_exp.pickWithin(); if (sphere_radius != v3f()) { f32 l = sphere_radius.getLength(); v3f mag = sphere_radius; mag.normalize(); v3f ofs = v3f(l,0,0); ofs.rotateXZBy(myrand_range(0.f,360.f)); ofs.rotateYZBy(myrand_range(0.f,360.f)); ofs.rotateXYBy(myrand_range(0.f,360.f)); pp.pos += ofs * mag; } if (p.attractor_kind != ParticleParamTypes::AttractorKind::none && attract != 0) { v3f dir; f32 dist = 0; /* =0 necessary to silence warning */ switch (p.attractor_kind) { case ParticleParamTypes::AttractorKind::none: break; case ParticleParamTypes::AttractorKind::point: { dist = pp.pos.getDistanceFrom(attractor_origin); dir = pp.pos - attractor_origin; dir.normalize(); break; } case ParticleParamTypes::AttractorKind::line: { // https://github.com/minetest/minetest/issues/11505#issuecomment-915612700 const auto& lorigin = attractor_origin; v3f ldir = attractor_direction; ldir.normalize(); auto origin_to_point = pp.pos - lorigin; auto scalar_projection = origin_to_point.dotProduct(ldir); auto point_on_line = lorigin + (ldir * scalar_projection); dist = pp.pos.getDistanceFrom(point_on_line); dir = (point_on_line - pp.pos); dir.normalize(); dir *= -1; // flip it around so strength=1 attracts, not repulses break; } case ParticleParamTypes::AttractorKind::plane: { // https://github.com/minetest/minetest/issues/11505#issuecomment-915612700 const v3f& porigin = attractor_origin; v3f normal = attractor_direction; normal.normalize(); v3f point_to_origin = porigin - pp.pos; f32 factor = normal.dotProduct(point_to_origin); if (numericAbsolute(factor) == 0.0f) { dir = normal; } else { factor = numericSign(factor); dir = normal * factor; } dist = numericAbsolute(normal.dotProduct(pp.pos - porigin)); dir *= -1; // flip it around so strength=1 attracts, not repulses break; } } f32 speedTowards = numericAbsolute(attract) * dist; v3f avel = dir * speedTowards; if (attract > 0 && speedTowards > 0) { avel *= -1; if (p.attractor_kill) { // make sure the particle dies after crossing the attractor threshold f32 timeToCenter = dist / speedTowards; if (timeToCenter < pp.expirationtime) pp.expirationtime = timeToCenter; } } pp.vel += avel; } p.copyCommon(pp); ClientParticleTexRef texture; v2f texpos, texsize; video::SColor color(0xFFFFFFFF); if (p.node.getContent() != CONTENT_IGNORE) { const ContentFeatures &f = m_particlemanager->m_env->getGameDef()->ndef()->get(p.node); if (!ParticleManager::getNodeParticleParams(p.node, f, pp, &texture.ref, texpos, texsize, &color, p.node_tile)) return; } else { if (m_texpool.size() == 0) return; texture = ClientParticleTexRef(m_texpool[m_texpool.size() == 1 ? 0 : myrand_range(0, m_texpool.size()-1)]); texpos = v2f(0.0f, 0.0f); texsize = v2f(1.0f, 1.0f); if (texture.tex->animated) pp.animation = texture.tex->animation; } // synchronize animation length with particle life if desired if (pp.animation.type != TAT_NONE) { // FIXME: this should be moved into a TileAnimationParams class method if (pp.animation.type == TAT_VERTICAL_FRAMES && pp.animation.vertical_frames.length < 0) { auto& a = pp.animation.vertical_frames; // we add a tiny extra value to prevent the first frame // from flickering back on just before the particle dies a.length = (pp.expirationtime / -a.length) + 0.1; } else if (pp.animation.type == TAT_SHEET_2D && pp.animation.sheet_2d.frame_length < 0) { auto& a = pp.animation.sheet_2d; auto frames = a.frames_w * a.frames_h; auto runtime = (pp.expirationtime / -a.frame_length) + 0.1; pp.animation.sheet_2d.frame_length = frames / runtime; } } // Allow keeping default random size if (p.size.start.max > 0.0f || p.size.end.max > 0.0f) pp.size = r_size.pickWithin(); ++m_active; m_particlemanager->addParticle(std::make_unique( pp, texture, texpos, texsize, color, this )); } void ParticleSpawner::step(float dtime, ClientEnvironment *env) { m_time += dtime; static thread_local const float radius = g_settings->getS16("max_block_send_distance") * MAP_BLOCKSIZE; bool unloaded = false; const core::matrix4 *attached_absolute_pos_rot_matrix = nullptr; if (m_attached_id) { if (GenericCAO *attached = env->getGenericCAO(m_attached_id)) { attached_absolute_pos_rot_matrix = attached->getAbsolutePosRotMatrix(); } else { unloaded = true; } } if (p.time != 0) { // Spawner exists for a predefined timespan for (auto i = m_spawntimes.begin(); i != m_spawntimes.end(); ) { if ((*i) <= m_time && p.amount > 0) { --p.amount; // Pretend to, but don't actually spawn a particle if it is // attached to an unloaded object or distant from player. if (!unloaded) spawnParticle(env, radius, attached_absolute_pos_rot_matrix); i = m_spawntimes.erase(i); } else { ++i; } } } else { // Spawner exists for an infinity timespan, spawn on a per-second base // Skip this step if attached to an unloaded object if (unloaded) return; for (int i = 0; i <= p.amount; i++) { if (myrand_float() < dtime) spawnParticle(env, radius, attached_absolute_pos_rot_matrix); } } } /* ParticleBuffer */ ParticleBuffer::ParticleBuffer(ClientEnvironment *env, const video::SMaterial &material) : scene::ISceneNode( env->getGameDef()->getSceneManager()->getRootSceneNode(), env->getGameDef()->getSceneManager()), m_mesh_buffer(make_irr()) { m_mesh_buffer->getMaterial() = material; } static constexpr u16 quad_indices[] = { 0, 1, 2, 2, 3, 0 }; std::optional ParticleBuffer::allocate() { u16 index; m_usage_timer = 0; if (!m_free_list.empty()) { index = m_free_list.back(); m_free_list.pop_back(); auto *vertices = static_cast(m_mesh_buffer->getVertices()); u16 *indices = m_mesh_buffer->getIndices(); // reset vertices, because it is only written in Particle::step() for (u16 i = 0; i < 4; i++) vertices[4 * index + i] = video::S3DVertex(); for (u16 i = 0; i < 6; i++) indices[6 * index + i] = 4 * index + quad_indices[i]; return index; } if (m_count >= MAX_PARTICLES_PER_BUFFER) return std::nullopt; // append new vertices // note: Our buffer never gets smaller, but ParticleManager will delete // us after a while. std::array vertices {}; m_mesh_buffer->append(&vertices.front(), 4, quad_indices, 6); index = m_count++; return index; } void ParticleBuffer::release(u16 index) { assert(index < m_count); u16 *indices = m_mesh_buffer->getIndices(); for (u16 i = 0; i < 6; i++) indices[6 * index + i] = 0; m_free_list.push_back(index); } video::S3DVertex *ParticleBuffer::getVertices(u16 index) { if (index >= m_count) return nullptr; m_bounding_box_dirty = true; return &(static_cast(m_mesh_buffer->getVertices())[4 * index]); } void ParticleBuffer::OnRegisterSceneNode() { if (IsVisible) SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT_EFFECT); scene::ISceneNode::OnRegisterSceneNode(); } const core::aabbox3df &ParticleBuffer::getBoundingBox() const { if (!m_bounding_box_dirty) return m_mesh_buffer->BoundingBox; core::aabbox3df box; for (u16 i = 0; i < m_count; i++) { // check if this index is used static_assert(quad_indices[1] != 0); if (m_mesh_buffer->getIndices()[6 * i + 1] == 0) continue; for (u16 j = 0; j < 4; j++) box.addInternalPoint(m_mesh_buffer->getPosition(i * 4 + j)); } m_mesh_buffer->BoundingBox = box; m_bounding_box_dirty = false; return m_mesh_buffer->BoundingBox; } void ParticleBuffer::render() { video::IVideoDriver *driver = SceneManager->getVideoDriver(); if (isEmpty()) return; driver->setTransform(video::ETS_WORLD, core::matrix4()); driver->setMaterial(m_mesh_buffer->getMaterial()); driver->drawMeshBuffer(m_mesh_buffer.get()); } /* ParticleManager */ ParticleManager::ParticleManager(ClientEnvironment *env) : m_env(env) {} ParticleManager::~ParticleManager() { clearAll(); } void ParticleManager::step(float dtime) { stepParticles(dtime); stepSpawners(dtime); stepBuffers(dtime); } void ParticleManager::stepSpawners(float dtime) { MutexAutoLock lock(m_spawner_list_lock); for (size_t i = 0; i < m_dying_particle_spawners.size();) { // the particlespawner owns the textures, so we need to make // sure there are no active particles before we free it if (!m_dying_particle_spawners[i]->hasActive()) { m_dying_particle_spawners[i] = std::move(m_dying_particle_spawners.back()); m_dying_particle_spawners.pop_back(); } else { ++i; } } for (auto it = m_particle_spawners.begin(); it != m_particle_spawners.end();) { auto &ps = it->second; if (ps->getExpired()) { // same as above if (ps->hasActive()) m_dying_particle_spawners.push_back(std::move(ps)); it = m_particle_spawners.erase(it); } else { ps->step(dtime, m_env); ++it; } } } void ParticleManager::stepParticles(float dtime) { MutexAutoLock lock(m_particle_list_lock); for (size_t i = 0; i < m_particles.size();) { Particle &p = *m_particles[i]; if (p.isExpired()) { ParticleSpawner *parent = p.getParent(); if (parent) { assert(parent->hasActive()); parent->decrActive(); } // delete m_particles[i] = std::move(m_particles.back()); m_particles.pop_back(); } else { p.step(dtime, m_env); ++i; } } } void ParticleManager::stepBuffers(float dtime) { constexpr float INTERVAL = 0.5f; if (!m_buffer_gc.step(dtime, INTERVAL)) return; MutexAutoLock lock(m_particle_list_lock); // remove buffers that have been unused for 5 seconds size_t alloc = 0; for (size_t i = 0; i < m_particle_buffers.size(); ) { auto &buf = m_particle_buffers[i]; buf->m_usage_timer += INTERVAL; if (buf->isEmpty() && buf->m_usage_timer > 5.0f) { // delete and swap with last buf->remove(); buf = std::move(m_particle_buffers.back()); m_particle_buffers.pop_back(); } else { i++; alloc += buf->m_count; } } g_profiler->avg("ParticleManager: particle buffer count [#]", m_particle_buffers.size()); if (!m_particle_buffers.empty()) g_profiler->avg("ParticleManager: buffer allocated size [#]", alloc); } void ParticleManager::clearAll() { MutexAutoLock lock(m_spawner_list_lock); MutexAutoLock lock2(m_particle_list_lock); m_particle_spawners.clear(); m_dying_particle_spawners.clear(); m_particles.clear(); // have to remove from scene first because it keeps a reference for (auto &it : m_particle_buffers) it->remove(); m_particle_buffers.clear(); } void ParticleManager::handleParticleEvent(ClientEvent *event, Client *client, LocalPlayer *player) { switch (event->type) { case CE_DELETE_PARTICLESPAWNER: { deleteParticleSpawner(event->delete_particlespawner.id); // no allocated memory in delete event break; } case CE_ADD_PARTICLESPAWNER: { deleteParticleSpawner(event->add_particlespawner.id); const ParticleSpawnerParameters &p = *event->add_particlespawner.p; // texture pool std::vector texpool; if (!p.texpool.empty()) { size_t txpsz = p.texpool.size(); texpool.reserve(txpsz); for (size_t i = 0; i < txpsz; ++i) { texpool.emplace_back(p.texpool[i], client->tsrc()); } } else { // no texpool in use, use fallback texture texpool.emplace_back(p.texture, client->tsrc()); } addParticleSpawner(event->add_particlespawner.id, std::make_unique( player, p, event->add_particlespawner.attached_id, std::move(texpool), this) ); delete event->add_particlespawner.p; break; } case CE_SPAWN_PARTICLE: { ParticleParameters &p = *event->spawn_particle; ClientParticleTexRef texture; std::unique_ptr texstore; v2f texpos, texsize; video::SColor color(0xFFFFFFFF); f32 oldsize = p.size; if (p.node.getContent() != CONTENT_IGNORE) { const ContentFeatures &f = m_env->getGameDef()->ndef()->get(p.node); getNodeParticleParams(p.node, f, p, &texture.ref, texpos, texsize, &color, p.node_tile); } else { /* with no particlespawner to own the texture, we need * to save it on the heap. it will be freed when the * particle is destroyed */ texstore = std::make_unique(p.texture, client->tsrc()); texture = ClientParticleTexRef(*texstore); texpos = v2f(0.0f, 0.0f); texsize = v2f(1.0f, 1.0f); } // Allow keeping default random size if (oldsize > 0.0f) p.size = oldsize; if (texture.ref) { addParticle(std::make_unique( p, texture, texpos, texsize, color, nullptr, std::move(texstore))); } delete event->spawn_particle; break; } default: break; } } bool ParticleManager::getNodeParticleParams(const MapNode &n, const ContentFeatures &f, ParticleParameters &p, video::ITexture **texture, v2f &texpos, v2f &texsize, video::SColor *color, u8 tilenum) { // No particles for "airlike" nodes if (f.drawtype == NDT_AIRLIKE) return false; // Texture u8 texid; if (tilenum > 0 && tilenum <= 6) texid = tilenum - 1; else texid = myrand_range(0,5); const TileLayer &tile = f.tiles[texid].layers[0]; p.animation.type = TAT_NONE; // Only use first frame of animated texture if (tile.material_flags & MATERIAL_FLAG_ANIMATION) *texture = (*tile.frames)[0].texture; else *texture = tile.texture; float size = (myrand_range(0,8)) / 64.0f; p.size = BS * size; if (tile.scale) size /= tile.scale; texsize = v2f(size * 2.0f, size * 2.0f); texpos.X = (myrand_range(0,64)) / 64.0f - texsize.X; texpos.Y = (myrand_range(0,64)) / 64.0f - texsize.Y; if (tile.has_color) *color = tile.color; else n.getColor(f, color); return true; } // The final burst of particles when a node is finally dug, *not* particles // spawned during the digging of a node. void ParticleManager::addDiggingParticles(IGameDef *gamedef, LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f) { // No particles for "airlike" nodes if (f.drawtype == NDT_AIRLIKE) return; for (u16 j = 0; j < 16; j++) { addNodeParticle(gamedef, player, pos, n, f); } } // During the digging of a node particles are spawned individually by this // function, called from Game::handleDigging() in game.cpp. void ParticleManager::addNodeParticle(IGameDef *gamedef, LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f) { ParticleParameters p; video::ITexture *ref = nullptr; v2f texpos, texsize; video::SColor color; if (!getNodeParticleParams(n, f, p, &ref, texpos, texsize, &color)) return; p.expirationtime = myrand_range(0, 100) / 100.0f; // Physics p.vel = v3f( myrand_range(-1.5f,1.5f), myrand_range(0.f,3.f), myrand_range(-1.5f,1.5f) ); p.acc = v3f( 0.0f, -player->movement_gravity * player->physics_override.gravity / BS, 0.0f ); p.pos = v3f( (f32)pos.X + myrand_range(0.f, .5f) - .25f, (f32)pos.Y + myrand_range(0.f, .5f) - .25f, (f32)pos.Z + myrand_range(0.f, .5f) - .25f ); addParticle(std::make_unique( p, ClientParticleTexRef(ref), texpos, texsize, color)); } void ParticleManager::reserveParticleSpace(size_t max_estimate) { MutexAutoLock lock(m_particle_list_lock); m_particles.reserve(m_particles.size() + max_estimate); } video::SMaterial ParticleManager::getMaterialForParticle(const ClientParticleTexRef &texture) { // translate blend modes to GL blend functions video::E_BLEND_FACTOR bfsrc, bfdst; video::E_BLEND_OPERATION blendop; const auto blendmode = texture.tex ? texture.tex->blendmode : ParticleParamTypes::BlendMode::alpha; switch (blendmode) { case ParticleParamTypes::BlendMode::add: bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_DST_ALPHA; blendop = video::EBO_ADD; break; case ParticleParamTypes::BlendMode::sub: bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_DST_ALPHA; blendop = video::EBO_REVSUBTRACT; break; case ParticleParamTypes::BlendMode::screen: bfsrc = video::EBF_ONE; bfdst = video::EBF_ONE_MINUS_SRC_COLOR; blendop = video::EBO_ADD; break; default: // includes ParticleParamTypes::BlendMode::alpha bfsrc = video::EBF_SRC_ALPHA; bfdst = video::EBF_ONE_MINUS_SRC_ALPHA; blendop = video::EBO_ADD; break; } video::SMaterial material; // Texture material.Lighting = false; material.BackfaceCulling = false; material.FogEnable = true; material.forEachTexture([] (auto &tex) { tex.MinFilter = video::ETMINF_NEAREST_MIPMAP_NEAREST; tex.MagFilter = video::ETMAGF_NEAREST; }); // We don't have working transparency sorting. Disable Z-Write for // correct results for clipped-alpha at least. material.ZWriteEnable = video::EZW_OFF; // enable alpha blending and set blend mode material.MaterialType = video::EMT_ONETEXTURE_BLEND; material.MaterialTypeParam = video::pack_textureBlendFunc( bfsrc, bfdst, video::EMFN_MODULATE_1X, video::EAS_TEXTURE | video::EAS_VERTEX_COLOR); material.BlendOperation = blendop; assert(texture.ref); material.setTexture(0, texture.ref); return material; } bool ParticleManager::addParticle(std::unique_ptr toadd) { MutexAutoLock lock(m_particle_list_lock); auto material = getMaterialForParticle(toadd->getTextureRef()); ParticleBuffer *found = nullptr; // simple shortcut when multiple particles of the same type get added if (!m_particles.empty()) { auto &last = m_particles.back(); if (last->getBuffer() && last->getBuffer()->getMaterial(0) == material) found = last->getBuffer(); } // search fitting buffer if (!found) { for (auto &buffer : m_particle_buffers) { if (buffer->getMaterial(0) == material) { found = buffer.get(); break; } } } // or create a new one if (!found) { auto tmp = make_irr(m_env, material); found = tmp.get(); m_particle_buffers.push_back(std::move(tmp)); } if (!toadd->attachToBuffer(found)) { infostream << "ParticleManager: buffer full, dropping particle" << std::endl; return false; } m_particles.push_back(std::move(toadd)); return true; } void ParticleManager::addParticleSpawner(u64 id, std::unique_ptr toadd) { MutexAutoLock lock(m_spawner_list_lock); auto &slot = m_particle_spawners[id]; if (slot) { // do not kill spawners here. children are still alive errorstream << "ParticleManager: Failed to add spawner with id " << id << ". Id already in use." << std::endl; return; } slot = std::move(toadd); } void ParticleManager::deleteParticleSpawner(u64 id) { MutexAutoLock lock(m_spawner_list_lock); auto it = m_particle_spawners.find(id); if (it != m_particle_spawners.end()) { m_dying_particle_spawners.push_back(std::move(it->second)); m_particle_spawners.erase(it); } }