minetest/src/test.cpp

1788 lines
48 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "test.h"
#include "irrlichttypes_extrabloated.h"
#include "debug.h"
#include "map.h"
#include "player.h"
#include "main.h"
#include "socket.h"
#include "connection.h"
#include "serialization.h"
#include "voxel.h"
#include "collision.h"
#include <sstream>
#include "porting.h"
#include "content_mapnode.h"
#include "nodedef.h"
#include "mapsector.h"
#include "settings.h"
#include "log.h"
#include "util/string.h"
#include "voxelalgorithms.h"
#include "inventory.h"
#include "util/numeric.h"
#include "util/serialize.h"
#include "noise.h" // PseudoRandom used for random data for compression
#include "clientserver.h" // LATEST_PROTOCOL_VERSION
#include <algorithm>
/*
Asserts that the exception occurs
*/
#define EXCEPTION_CHECK(EType, code)\
{\
bool exception_thrown = false;\
try{ code; }\
catch(EType &e) { exception_thrown = true; }\
UASSERT(exception_thrown);\
}
#define UTEST(x, fmt, ...)\
{\
if(!(x)){\
LOGLINEF(LMT_ERROR, "Test (%s) failed: " fmt, #x, ##__VA_ARGS__);\
test_failed = true;\
}\
}
#define UASSERT(x) UTEST(x, "UASSERT")
/*
A few item and node definitions for those tests that need them
*/
#define CONTENT_STONE 0
#define CONTENT_GRASS 0x800
#define CONTENT_TORCH 100
void define_some_nodes(IWritableItemDefManager *idef, IWritableNodeDefManager *ndef)
{
content_t i;
ItemDefinition itemdef;
ContentFeatures f;
/*
Stone
*/
i = CONTENT_STONE;
itemdef = ItemDefinition();
itemdef.type = ITEM_NODE;
itemdef.name = "default:stone";
itemdef.description = "Stone";
itemdef.groups["cracky"] = 3;
itemdef.inventory_image = "[inventorycube"
"{default_stone.png"
"{default_stone.png"
"{default_stone.png";
f = ContentFeatures();
f.name = itemdef.name;
for(int i = 0; i < 6; i++)
f.tiledef[i].name = "default_stone.png";
f.is_ground_content = true;
idef->registerItem(itemdef);
ndef->set(i, f);
/*
Grass
*/
i = CONTENT_GRASS;
itemdef = ItemDefinition();
itemdef.type = ITEM_NODE;
itemdef.name = "default:dirt_with_grass";
itemdef.description = "Dirt with grass";
itemdef.groups["crumbly"] = 3;
itemdef.inventory_image = "[inventorycube"
"{default_grass.png"
"{default_dirt.png&default_grass_side.png"
"{default_dirt.png&default_grass_side.png";
f = ContentFeatures();
f.name = itemdef.name;
f.tiledef[0].name = "default_grass.png";
f.tiledef[1].name = "default_dirt.png";
for(int i = 2; i < 6; i++)
f.tiledef[i].name = "default_dirt.png^default_grass_side.png";
f.is_ground_content = true;
idef->registerItem(itemdef);
ndef->set(i, f);
/*
Torch (minimal definition for lighting tests)
*/
i = CONTENT_TORCH;
itemdef = ItemDefinition();
itemdef.type = ITEM_NODE;
itemdef.name = "default:torch";
f = ContentFeatures();
f.name = itemdef.name;
f.param_type = CPT_LIGHT;
f.light_propagates = true;
f.sunlight_propagates = true;
f.light_source = LIGHT_MAX-1;
idef->registerItem(itemdef);
ndef->set(i, f);
}
struct TestBase
{
bool test_failed;
TestBase():
test_failed(false)
{}
};
struct TestUtilities: public TestBase
{
void Run()
{
/*infostream<<"wrapDegrees(100.0) = "<<wrapDegrees(100.0)<<std::endl;
infostream<<"wrapDegrees(720.5) = "<<wrapDegrees(720.5)<<std::endl;
infostream<<"wrapDegrees(-0.5) = "<<wrapDegrees(-0.5)<<std::endl;*/
UASSERT(fabs(wrapDegrees(100.0) - 100.0) < 0.001);
UASSERT(fabs(wrapDegrees(720.5) - 0.5) < 0.001);
UASSERT(fabs(wrapDegrees(-0.5) - (-0.5)) < 0.001);
UASSERT(fabs(wrapDegrees(-365.5) - (-5.5)) < 0.001);
UASSERT(lowercase("Foo bAR") == "foo bar");
UASSERT(is_yes("YeS") == true);
UASSERT(is_yes("") == false);
UASSERT(is_yes("FAlse") == false);
const char *ends[] = {"abc", "c", "bc", NULL};
UASSERT(removeStringEnd("abc", ends) == "");
UASSERT(removeStringEnd("bc", ends) == "b");
UASSERT(removeStringEnd("12c", ends) == "12");
UASSERT(removeStringEnd("foo", ends) == "");
}
};
struct TestSettings: public TestBase
{
void Run()
{
Settings s;
// Test reading of settings
s.parseConfigLine("leet = 1337");
s.parseConfigLine("leetleet = 13371337");
s.parseConfigLine("leetleet_neg = -13371337");
s.parseConfigLine("floaty_thing = 1.1");
s.parseConfigLine("stringy_thing = asd /( ¤%&(/\" BLÖÄRP");
s.parseConfigLine("coord = (1, 2, 4.5)");
UASSERT(s.getS32("leet") == 1337);
UASSERT(s.getS16("leetleet") == 32767);
UASSERT(s.getS16("leetleet_neg") == -32768);
// Not sure if 1.1 is an exact value as a float, but doesn't matter
UASSERT(fabs(s.getFloat("floaty_thing") - 1.1) < 0.001);
UASSERT(s.get("stringy_thing") == "asd /( ¤%&(/\" BLÖÄRP");
UASSERT(fabs(s.getV3F("coord").X - 1.0) < 0.001);
UASSERT(fabs(s.getV3F("coord").Y - 2.0) < 0.001);
UASSERT(fabs(s.getV3F("coord").Z - 4.5) < 0.001);
// Test the setting of settings too
s.setFloat("floaty_thing_2", 1.2);
s.setV3F("coord2", v3f(1, 2, 3.3));
UASSERT(s.get("floaty_thing_2").substr(0,3) == "1.2");
UASSERT(fabs(s.getFloat("floaty_thing_2") - 1.2) < 0.001);
UASSERT(fabs(s.getV3F("coord2").X - 1.0) < 0.001);
UASSERT(fabs(s.getV3F("coord2").Y - 2.0) < 0.001);
UASSERT(fabs(s.getV3F("coord2").Z - 3.3) < 0.001);
}
};
struct TestSerialization: public TestBase
{
// To be used like this:
// mkstr("Some\0string\0with\0embedded\0nuls")
// since std::string("...") doesn't work as expected in that case.
template<size_t N> std::string mkstr(const char (&s)[N])
{
return std::string(s, N - 1);
}
void Run()
{
// Tests some serialization primitives
UASSERT(serializeString("") == mkstr("\0\0"));
UASSERT(serializeWideString(L"") == mkstr("\0\0"));
UASSERT(serializeLongString("") == mkstr("\0\0\0\0"));
UASSERT(serializeJsonString("") == "\"\"");
std::string teststring = "Hello world!";
UASSERT(serializeString(teststring) ==
mkstr("\0\14Hello world!"));
UASSERT(serializeWideString(narrow_to_wide(teststring)) ==
mkstr("\0\14\0H\0e\0l\0l\0o\0 \0w\0o\0r\0l\0d\0!"));
UASSERT(serializeLongString(teststring) ==
mkstr("\0\0\0\14Hello world!"));
UASSERT(serializeJsonString(teststring) ==
"\"Hello world!\"");
std::string teststring2;
std::wstring teststring2_w;
std::string teststring2_w_encoded;
{
std::ostringstream tmp_os;
std::wostringstream tmp_os_w;
std::ostringstream tmp_os_w_encoded;
for(int i = 0; i < 256; i++)
{
tmp_os<<(char)i;
tmp_os_w<<(wchar_t)i;
tmp_os_w_encoded<<(char)0<<(char)i;
}
teststring2 = tmp_os.str();
teststring2_w = tmp_os_w.str();
teststring2_w_encoded = tmp_os_w_encoded.str();
}
UASSERT(serializeString(teststring2) ==
mkstr("\1\0") + teststring2);
UASSERT(serializeWideString(teststring2_w) ==
mkstr("\1\0") + teststring2_w_encoded);
UASSERT(serializeLongString(teststring2) ==
mkstr("\0\0\1\0") + teststring2);
// MSVC fails when directly using "\\\\"
std::string backslash = "\\";
UASSERT(serializeJsonString(teststring2) ==
mkstr("\"") +
"\\u0000\\u0001\\u0002\\u0003\\u0004\\u0005\\u0006\\u0007" +
"\\b\\t\\n\\u000b\\f\\r\\u000e\\u000f" +
"\\u0010\\u0011\\u0012\\u0013\\u0014\\u0015\\u0016\\u0017" +
"\\u0018\\u0019\\u001a\\u001b\\u001c\\u001d\\u001e\\u001f" +
" !\\\"" + teststring2.substr(0x23, 0x2f-0x23) +
"\\/" + teststring2.substr(0x30, 0x5c-0x30) +
backslash + backslash + teststring2.substr(0x5d, 0x7f-0x5d) + "\\u007f" +
"\\u0080\\u0081\\u0082\\u0083\\u0084\\u0085\\u0086\\u0087" +
"\\u0088\\u0089\\u008a\\u008b\\u008c\\u008d\\u008e\\u008f" +
"\\u0090\\u0091\\u0092\\u0093\\u0094\\u0095\\u0096\\u0097" +
"\\u0098\\u0099\\u009a\\u009b\\u009c\\u009d\\u009e\\u009f" +
"\\u00a0\\u00a1\\u00a2\\u00a3\\u00a4\\u00a5\\u00a6\\u00a7" +
"\\u00a8\\u00a9\\u00aa\\u00ab\\u00ac\\u00ad\\u00ae\\u00af" +
"\\u00b0\\u00b1\\u00b2\\u00b3\\u00b4\\u00b5\\u00b6\\u00b7" +
"\\u00b8\\u00b9\\u00ba\\u00bb\\u00bc\\u00bd\\u00be\\u00bf" +
"\\u00c0\\u00c1\\u00c2\\u00c3\\u00c4\\u00c5\\u00c6\\u00c7" +
"\\u00c8\\u00c9\\u00ca\\u00cb\\u00cc\\u00cd\\u00ce\\u00cf" +
"\\u00d0\\u00d1\\u00d2\\u00d3\\u00d4\\u00d5\\u00d6\\u00d7" +
"\\u00d8\\u00d9\\u00da\\u00db\\u00dc\\u00dd\\u00de\\u00df" +
"\\u00e0\\u00e1\\u00e2\\u00e3\\u00e4\\u00e5\\u00e6\\u00e7" +
"\\u00e8\\u00e9\\u00ea\\u00eb\\u00ec\\u00ed\\u00ee\\u00ef" +
"\\u00f0\\u00f1\\u00f2\\u00f3\\u00f4\\u00f5\\u00f6\\u00f7" +
"\\u00f8\\u00f9\\u00fa\\u00fb\\u00fc\\u00fd\\u00fe\\u00ff" +
"\"");
{
std::istringstream is(serializeString(teststring2), std::ios::binary);
UASSERT(deSerializeString(is) == teststring2);
UASSERT(!is.eof());
is.get();
UASSERT(is.eof());
}
{
std::istringstream is(serializeWideString(teststring2_w), std::ios::binary);
UASSERT(deSerializeWideString(is) == teststring2_w);
UASSERT(!is.eof());
is.get();
UASSERT(is.eof());
}
{
std::istringstream is(serializeLongString(teststring2), std::ios::binary);
UASSERT(deSerializeLongString(is) == teststring2);
UASSERT(!is.eof());
is.get();
UASSERT(is.eof());
}
{
std::istringstream is(serializeJsonString(teststring2), std::ios::binary);
//dstream<<serializeJsonString(deSerializeJsonString(is));
UASSERT(deSerializeJsonString(is) == teststring2);
UASSERT(!is.eof());
is.get();
UASSERT(is.eof());
}
}
};
struct TestNodedefSerialization: public TestBase
{
void Run()
{
ContentFeatures f;
f.name = "default:stone";
for(int i = 0; i < 6; i++)
f.tiledef[i].name = "default_stone.png";
f.is_ground_content = true;
std::ostringstream os(std::ios::binary);
f.serialize(os, LATEST_PROTOCOL_VERSION);
verbosestream<<"Test ContentFeatures size: "<<os.str().size()<<std::endl;
std::istringstream is(os.str(), std::ios::binary);
ContentFeatures f2;
f2.deSerialize(is);
UASSERT(f.walkable == f2.walkable);
UASSERT(f.node_box.type == f2.node_box.type);
}
};
struct TestCompress: public TestBase
{
void Run()
{
{ // ver 0
SharedBuffer<u8> fromdata(4);
fromdata[0]=1;
fromdata[1]=5;
fromdata[2]=5;
fromdata[3]=1;
std::ostringstream os(std::ios_base::binary);
compress(fromdata, os, 0);
std::string str_out = os.str();
infostream<<"str_out.size()="<<str_out.size()<<std::endl;
infostream<<"TestCompress: 1,5,5,1 -> ";
for(u32 i=0; i<str_out.size(); i++)
{
infostream<<(u32)str_out[i]<<",";
}
infostream<<std::endl;
UASSERT(str_out.size() == 10);
UASSERT(str_out[0] == 0);
UASSERT(str_out[1] == 0);
UASSERT(str_out[2] == 0);
UASSERT(str_out[3] == 4);
UASSERT(str_out[4] == 0);
UASSERT(str_out[5] == 1);
UASSERT(str_out[6] == 1);
UASSERT(str_out[7] == 5);
UASSERT(str_out[8] == 0);
UASSERT(str_out[9] == 1);
std::istringstream is(str_out, std::ios_base::binary);
std::ostringstream os2(std::ios_base::binary);
decompress(is, os2, 0);
std::string str_out2 = os2.str();
infostream<<"decompress: ";
for(u32 i=0; i<str_out2.size(); i++)
{
infostream<<(u32)str_out2[i]<<",";
}
infostream<<std::endl;
UASSERT(str_out2.size() == fromdata.getSize());
for(u32 i=0; i<str_out2.size(); i++)
{
UASSERT(str_out2[i] == fromdata[i]);
}
}
{ // ver HIGHEST
SharedBuffer<u8> fromdata(4);
fromdata[0]=1;
fromdata[1]=5;
fromdata[2]=5;
fromdata[3]=1;
std::ostringstream os(std::ios_base::binary);
compress(fromdata, os, SER_FMT_VER_HIGHEST);
std::string str_out = os.str();
infostream<<"str_out.size()="<<str_out.size()<<std::endl;
infostream<<"TestCompress: 1,5,5,1 -> ";
for(u32 i=0; i<str_out.size(); i++)
{
infostream<<(u32)str_out[i]<<",";
}
infostream<<std::endl;
std::istringstream is(str_out, std::ios_base::binary);
std::ostringstream os2(std::ios_base::binary);
decompress(is, os2, SER_FMT_VER_HIGHEST);
std::string str_out2 = os2.str();
infostream<<"decompress: ";
for(u32 i=0; i<str_out2.size(); i++)
{
infostream<<(u32)str_out2[i]<<",";
}
infostream<<std::endl;
UASSERT(str_out2.size() == fromdata.getSize());
for(u32 i=0; i<str_out2.size(); i++)
{
UASSERT(str_out2[i] == fromdata[i]);
}
}
// Test zlib wrapper with large amounts of data (larger than its
// internal buffers)
{
infostream<<"Test: Testing zlib wrappers with a large amount "
<<"of pseudorandom data"<<std::endl;
u32 size = 50000;
infostream<<"Test: Input size of large compressZlib is "
<<size<<std::endl;
std::string data_in;
data_in.resize(size);
PseudoRandom pseudorandom(9420);
for(u32 i=0; i<size; i++)
data_in[i] = pseudorandom.range(0,255);
std::ostringstream os_compressed(std::ios::binary);
compressZlib(data_in, os_compressed);
infostream<<"Test: Output size of large compressZlib is "
<<os_compressed.str().size()<<std::endl;
std::istringstream is_compressed(os_compressed.str(), std::ios::binary);
std::ostringstream os_decompressed(std::ios::binary);
decompressZlib(is_compressed, os_decompressed);
infostream<<"Test: Output size of large decompressZlib is "
<<os_decompressed.str().size()<<std::endl;
std::string str_decompressed = os_decompressed.str();
UTEST(str_decompressed.size() == data_in.size(), "Output size not"
" equal (output: %u, input: %u)",
unsigned (str_decompressed.size()), unsigned (data_in.size()));
for(u32 i=0; i<size && i<str_decompressed.size(); i++){
UTEST(str_decompressed[i] == data_in[i],
"index out[%i]=%i differs from in[%i]=%i",
i, str_decompressed[i], i, data_in[i]);
}
}
}
};
struct TestMapNode: public TestBase
{
void Run(INodeDefManager *nodedef)
{
MapNode n;
// Default values
UASSERT(n.getContent() == CONTENT_AIR);
UASSERT(n.getLight(LIGHTBANK_DAY, nodedef) == 0);
UASSERT(n.getLight(LIGHTBANK_NIGHT, nodedef) == 0);
// Transparency
n.setContent(CONTENT_AIR);
UASSERT(nodedef->get(n).light_propagates == true);
n.setContent(LEGN(nodedef, "CONTENT_STONE"));
UASSERT(nodedef->get(n).light_propagates == false);
}
};
struct TestVoxelManipulator: public TestBase
{
void Run(INodeDefManager *nodedef)
{
/*
VoxelArea
*/
VoxelArea a(v3s16(-1,-1,-1), v3s16(1,1,1));
UASSERT(a.index(0,0,0) == 1*3*3 + 1*3 + 1);
UASSERT(a.index(-1,-1,-1) == 0);
VoxelArea c(v3s16(-2,-2,-2), v3s16(2,2,2));
// An area that is 1 bigger in x+ and z-
VoxelArea d(v3s16(-2,-2,-3), v3s16(3,2,2));
std::list<VoxelArea> aa;
d.diff(c, aa);
// Correct results
std::vector<VoxelArea> results;
results.push_back(VoxelArea(v3s16(-2,-2,-3),v3s16(3,2,-3)));
results.push_back(VoxelArea(v3s16(3,-2,-2),v3s16(3,2,2)));
UASSERT(aa.size() == results.size());
infostream<<"Result of diff:"<<std::endl;
for(std::list<VoxelArea>::const_iterator
i = aa.begin(); i != aa.end(); ++i)
{
i->print(infostream);
infostream<<std::endl;
std::vector<VoxelArea>::iterator j = std::find(results.begin(), results.end(), *i);
UASSERT(j != results.end());
results.erase(j);
}
/*
VoxelManipulator
*/
VoxelManipulator v;
v.print(infostream, nodedef);
infostream<<"*** Setting (-1,0,-1)=2 ***"<<std::endl;
v.setNodeNoRef(v3s16(-1,0,-1), MapNode(CONTENT_GRASS));
v.print(infostream, nodedef);
UASSERT(v.getNode(v3s16(-1,0,-1)).getContent() == CONTENT_GRASS);
infostream<<"*** Reading from inexistent (0,0,-1) ***"<<std::endl;
EXCEPTION_CHECK(InvalidPositionException, v.getNode(v3s16(0,0,-1)));
v.print(infostream, nodedef);
infostream<<"*** Adding area ***"<<std::endl;
v.addArea(a);
v.print(infostream, nodedef);
UASSERT(v.getNode(v3s16(-1,0,-1)).getContent() == CONTENT_GRASS);
EXCEPTION_CHECK(InvalidPositionException, v.getNode(v3s16(0,1,1)));
}
};
struct TestVoxelAlgorithms: public TestBase
{
void Run(INodeDefManager *ndef)
{
/*
voxalgo::propagateSunlight
*/
{
VoxelManipulator v;
for(u16 z=0; z<3; z++)
for(u16 y=0; y<3; y++)
for(u16 x=0; x<3; x++)
{
v3s16 p(x,y,z);
v.setNodeNoRef(p, MapNode(CONTENT_AIR));
}
VoxelArea a(v3s16(0,0,0), v3s16(2,2,2));
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
//v.print(dstream, ndef, VOXELPRINT_LIGHT_DAY);
UASSERT(res.bottom_sunlight_valid == true);
UASSERT(v.getNode(v3s16(1,1,1)).getLight(LIGHTBANK_DAY, ndef)
== LIGHT_SUN);
}
v.setNodeNoRef(v3s16(0,0,0), MapNode(CONTENT_STONE));
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
UASSERT(v.getNode(v3s16(1,1,1)).getLight(LIGHTBANK_DAY, ndef)
== LIGHT_SUN);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, false, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
UASSERT(v.getNode(v3s16(2,0,2)).getLight(LIGHTBANK_DAY, ndef)
== 0);
}
v.setNodeNoRef(v3s16(1,3,2), MapNode(CONTENT_STONE));
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
UASSERT(v.getNode(v3s16(1,1,2)).getLight(LIGHTBANK_DAY, ndef)
== 0);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, false, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
UASSERT(v.getNode(v3s16(1,0,2)).getLight(LIGHTBANK_DAY, ndef)
== 0);
}
{
MapNode n(CONTENT_AIR);
n.setLight(LIGHTBANK_DAY, 10, ndef);
v.setNodeNoRef(v3s16(1,-1,2), n);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, false, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
}
{
MapNode n(CONTENT_AIR);
n.setLight(LIGHTBANK_DAY, LIGHT_SUN, ndef);
v.setNodeNoRef(v3s16(1,-1,2), n);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == false);
}
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, false, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == false);
}
v.setNodeNoRef(v3s16(1,3,2), MapNode(CONTENT_IGNORE));
{
std::set<v3s16> light_sources;
voxalgo::setLight(v, a, 0, ndef);
voxalgo::SunlightPropagateResult res = voxalgo::propagateSunlight(
v, a, true, light_sources, ndef);
UASSERT(res.bottom_sunlight_valid == true);
}
}
/*
voxalgo::clearLightAndCollectSources
*/
{
VoxelManipulator v;
for(u16 z=0; z<3; z++)
for(u16 y=0; y<3; y++)
for(u16 x=0; x<3; x++)
{
v3s16 p(x,y,z);
v.setNode(p, MapNode(CONTENT_AIR));
}
VoxelArea a(v3s16(0,0,0), v3s16(2,2,2));
v.setNodeNoRef(v3s16(0,0,0), MapNode(CONTENT_STONE));
v.setNodeNoRef(v3s16(1,1,1), MapNode(CONTENT_TORCH));
{
MapNode n(CONTENT_AIR);
n.setLight(LIGHTBANK_DAY, 1, ndef);
v.setNode(v3s16(1,1,2), n);
}
{
std::set<v3s16> light_sources;
std::map<v3s16, u8> unlight_from;
voxalgo::clearLightAndCollectSources(v, a, LIGHTBANK_DAY,
ndef, light_sources, unlight_from);
//v.print(dstream, ndef, VOXELPRINT_LIGHT_DAY);
UASSERT(v.getNode(v3s16(0,1,1)).getLight(LIGHTBANK_DAY, ndef)
== 0);
UASSERT(light_sources.find(v3s16(1,1,1)) != light_sources.end());
UASSERT(light_sources.size() == 1);
UASSERT(unlight_from.find(v3s16(1,1,2)) != unlight_from.end());
UASSERT(unlight_from.size() == 1);
}
}
}
};
struct TestInventory: public TestBase
{
void Run(IItemDefManager *idef)
{
std::string serialized_inventory =
"List 0 32\n"
"Width 3\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:cobble 61\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:dirt 71\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:dirt 99\n"
"Item default:cobble 38\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"EndInventoryList\n"
"EndInventory\n";
std::string serialized_inventory_2 =
"List main 32\n"
"Width 5\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:cobble 61\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:dirt 71\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Item default:dirt 99\n"
"Item default:cobble 38\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"Empty\n"
"EndInventoryList\n"
"EndInventory\n";
Inventory inv(idef);
std::istringstream is(serialized_inventory, std::ios::binary);
inv.deSerialize(is);
UASSERT(inv.getList("0"));
UASSERT(!inv.getList("main"));
inv.getList("0")->setName("main");
UASSERT(!inv.getList("0"));
UASSERT(inv.getList("main"));
UASSERT(inv.getList("main")->getWidth() == 3);
inv.getList("main")->setWidth(5);
std::ostringstream inv_os(std::ios::binary);
inv.serialize(inv_os);
UASSERT(inv_os.str() == serialized_inventory_2);
}
};
/*
NOTE: These tests became non-working then NodeContainer was removed.
These should be redone, utilizing some kind of a virtual
interface for Map (IMap would be fine).
*/
#if 0
struct TestMapBlock: public TestBase
{
class TC : public NodeContainer
{
public:
MapNode node;
bool position_valid;
core::list<v3s16> validity_exceptions;
TC()
{
position_valid = true;
}
virtual bool isValidPosition(v3s16 p)
{
//return position_valid ^ (p==position_valid_exception);
bool exception = false;
for(core::list<v3s16>::Iterator i=validity_exceptions.begin();
i != validity_exceptions.end(); i++)
{
if(p == *i)
{
exception = true;
break;
}
}
return exception ? !position_valid : position_valid;
}
virtual MapNode getNode(v3s16 p)
{
if(isValidPosition(p) == false)
throw InvalidPositionException();
return node;
}
virtual void setNode(v3s16 p, MapNode & n)
{
if(isValidPosition(p) == false)
throw InvalidPositionException();
};
virtual u16 nodeContainerId() const
{
return 666;
}
};
void Run()
{
TC parent;
MapBlock b(&parent, v3s16(1,1,1));
v3s16 relpos(MAP_BLOCKSIZE, MAP_BLOCKSIZE, MAP_BLOCKSIZE);
UASSERT(b.getPosRelative() == relpos);
UASSERT(b.getBox().MinEdge.X == MAP_BLOCKSIZE);
UASSERT(b.getBox().MaxEdge.X == MAP_BLOCKSIZE*2-1);
UASSERT(b.getBox().MinEdge.Y == MAP_BLOCKSIZE);
UASSERT(b.getBox().MaxEdge.Y == MAP_BLOCKSIZE*2-1);
UASSERT(b.getBox().MinEdge.Z == MAP_BLOCKSIZE);
UASSERT(b.getBox().MaxEdge.Z == MAP_BLOCKSIZE*2-1);
UASSERT(b.isValidPosition(v3s16(0,0,0)) == true);
UASSERT(b.isValidPosition(v3s16(-1,0,0)) == false);
UASSERT(b.isValidPosition(v3s16(-1,-142,-2341)) == false);
UASSERT(b.isValidPosition(v3s16(-124,142,2341)) == false);
UASSERT(b.isValidPosition(v3s16(MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1)) == true);
UASSERT(b.isValidPosition(v3s16(MAP_BLOCKSIZE-1,MAP_BLOCKSIZE,MAP_BLOCKSIZE-1)) == false);
/*
TODO: this method should probably be removed
if the block size isn't going to be set variable
*/
/*UASSERT(b.getSizeNodes() == v3s16(MAP_BLOCKSIZE,
MAP_BLOCKSIZE, MAP_BLOCKSIZE));*/
// Changed flag should be initially set
UASSERT(b.getModified() == MOD_STATE_WRITE_NEEDED);
b.resetModified();
UASSERT(b.getModified() == MOD_STATE_CLEAN);
// All nodes should have been set to
// .d=CONTENT_IGNORE and .getLight() = 0
for(u16 z=0; z<MAP_BLOCKSIZE; z++)
for(u16 y=0; y<MAP_BLOCKSIZE; y++)
for(u16 x=0; x<MAP_BLOCKSIZE; x++)
{
//UASSERT(b.getNode(v3s16(x,y,z)).getContent() == CONTENT_AIR);
UASSERT(b.getNode(v3s16(x,y,z)).getContent() == CONTENT_IGNORE);
UASSERT(b.getNode(v3s16(x,y,z)).getLight(LIGHTBANK_DAY) == 0);
UASSERT(b.getNode(v3s16(x,y,z)).getLight(LIGHTBANK_NIGHT) == 0);
}
{
MapNode n(CONTENT_AIR);
for(u16 z=0; z<MAP_BLOCKSIZE; z++)
for(u16 y=0; y<MAP_BLOCKSIZE; y++)
for(u16 x=0; x<MAP_BLOCKSIZE; x++)
{
b.setNode(v3s16(x,y,z), n);
}
}
/*
Parent fetch functions
*/
parent.position_valid = false;
parent.node.setContent(5);
MapNode n;
// Positions in the block should still be valid
UASSERT(b.isValidPositionParent(v3s16(0,0,0)) == true);
UASSERT(b.isValidPositionParent(v3s16(MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1)) == true);
n = b.getNodeParent(v3s16(0,MAP_BLOCKSIZE-1,0));
UASSERT(n.getContent() == CONTENT_AIR);
// ...but outside the block they should be invalid
UASSERT(b.isValidPositionParent(v3s16(-121,2341,0)) == false);
UASSERT(b.isValidPositionParent(v3s16(-1,0,0)) == false);
UASSERT(b.isValidPositionParent(v3s16(MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1,MAP_BLOCKSIZE)) == false);
{
bool exception_thrown = false;
try{
// This should throw an exception
MapNode n = b.getNodeParent(v3s16(0,0,-1));
}
catch(InvalidPositionException &e)
{
exception_thrown = true;
}
UASSERT(exception_thrown);
}
parent.position_valid = true;
// Now the positions outside should be valid
UASSERT(b.isValidPositionParent(v3s16(-121,2341,0)) == true);
UASSERT(b.isValidPositionParent(v3s16(-1,0,0)) == true);
UASSERT(b.isValidPositionParent(v3s16(MAP_BLOCKSIZE-1,MAP_BLOCKSIZE-1,MAP_BLOCKSIZE)) == true);
n = b.getNodeParent(v3s16(0,0,MAP_BLOCKSIZE));
UASSERT(n.getContent() == 5);
/*
Set a node
*/
v3s16 p(1,2,0);
n.setContent(4);
b.setNode(p, n);
UASSERT(b.getNode(p).getContent() == 4);
//TODO: Update to new system
/*UASSERT(b.getNodeTile(p) == 4);
UASSERT(b.getNodeTile(v3s16(-1,-1,0)) == 5);*/
/*
propagateSunlight()
*/
// Set lighting of all nodes to 0
for(u16 z=0; z<MAP_BLOCKSIZE; z++){
for(u16 y=0; y<MAP_BLOCKSIZE; y++){
for(u16 x=0; x<MAP_BLOCKSIZE; x++){
MapNode n = b.getNode(v3s16(x,y,z));
n.setLight(LIGHTBANK_DAY, 0);
n.setLight(LIGHTBANK_NIGHT, 0);
b.setNode(v3s16(x,y,z), n);
}
}
}
{
/*
Check how the block handles being a lonely sky block
*/
parent.position_valid = true;
b.setIsUnderground(false);
parent.node.setContent(CONTENT_AIR);
parent.node.setLight(LIGHTBANK_DAY, LIGHT_SUN);
parent.node.setLight(LIGHTBANK_NIGHT, 0);
core::map<v3s16, bool> light_sources;
// The bottom block is invalid, because we have a shadowing node
UASSERT(b.propagateSunlight(light_sources) == false);
UASSERT(b.getNode(v3s16(1,4,0)).getLight(LIGHTBANK_DAY) == LIGHT_SUN);
UASSERT(b.getNode(v3s16(1,3,0)).getLight(LIGHTBANK_DAY) == LIGHT_SUN);
UASSERT(b.getNode(v3s16(1,2,0)).getLight(LIGHTBANK_DAY) == 0);
UASSERT(b.getNode(v3s16(1,1,0)).getLight(LIGHTBANK_DAY) == 0);
UASSERT(b.getNode(v3s16(1,0,0)).getLight(LIGHTBANK_DAY) == 0);
UASSERT(b.getNode(v3s16(1,2,3)).getLight(LIGHTBANK_DAY) == LIGHT_SUN);
UASSERT(b.getFaceLight2(1000, p, v3s16(0,1,0)) == LIGHT_SUN);
UASSERT(b.getFaceLight2(1000, p, v3s16(0,-1,0)) == 0);
UASSERT(b.getFaceLight2(0, p, v3s16(0,-1,0)) == 0);
// According to MapBlock::getFaceLight,
// The face on the z+ side should have double-diminished light
//UASSERT(b.getFaceLight(p, v3s16(0,0,1)) == diminish_light(diminish_light(LIGHT_MAX)));
// The face on the z+ side should have diminished light
UASSERT(b.getFaceLight2(1000, p, v3s16(0,0,1)) == diminish_light(LIGHT_MAX));
}
/*
Check how the block handles being in between blocks with some non-sunlight
while being underground
*/
{
// Make neighbours to exist and set some non-sunlight to them
parent.position_valid = true;
b.setIsUnderground(true);
parent.node.setLight(LIGHTBANK_DAY, LIGHT_MAX/2);
core::map<v3s16, bool> light_sources;
// The block below should be valid because there shouldn't be
// sunlight in there either
UASSERT(b.propagateSunlight(light_sources, true) == true);
// Should not touch nodes that are not affected (that is, all of them)
//UASSERT(b.getNode(v3s16(1,2,3)).getLight() == LIGHT_SUN);
// Should set light of non-sunlighted blocks to 0.
UASSERT(b.getNode(v3s16(1,2,3)).getLight(LIGHTBANK_DAY) == 0);
}
/*
Set up a situation where:
- There is only air in this block
- There is a valid non-sunlighted block at the bottom, and
- Invalid blocks elsewhere.
- the block is not underground.
This should result in bottom block invalidity
*/
{
b.setIsUnderground(false);
// Clear block
for(u16 z=0; z<MAP_BLOCKSIZE; z++){
for(u16 y=0; y<MAP_BLOCKSIZE; y++){
for(u16 x=0; x<MAP_BLOCKSIZE; x++){
MapNode n;
n.setContent(CONTENT_AIR);
n.setLight(LIGHTBANK_DAY, 0);
b.setNode(v3s16(x,y,z), n);
}
}
}
// Make neighbours invalid
parent.position_valid = false;
// Add exceptions to the top of the bottom block
for(u16 x=0; x<MAP_BLOCKSIZE; x++)
for(u16 z=0; z<MAP_BLOCKSIZE; z++)
{
parent.validity_exceptions.push_back(v3s16(MAP_BLOCKSIZE+x, MAP_BLOCKSIZE-1, MAP_BLOCKSIZE+z));
}
// Lighting value for the valid nodes
parent.node.setLight(LIGHTBANK_DAY, LIGHT_MAX/2);
core::map<v3s16, bool> light_sources;
// Bottom block is not valid
UASSERT(b.propagateSunlight(light_sources) == false);
}
}
};
struct TestMapSector: public TestBase
{
class TC : public NodeContainer
{
public:
MapNode node;
bool position_valid;
TC()
{
position_valid = true;
}
virtual bool isValidPosition(v3s16 p)
{
return position_valid;
}
virtual MapNode getNode(v3s16 p)
{
if(position_valid == false)
throw InvalidPositionException();
return node;
}
virtual void setNode(v3s16 p, MapNode & n)
{
if(position_valid == false)
throw InvalidPositionException();
};
virtual u16 nodeContainerId() const
{
return 666;
}
};
void Run()
{
TC parent;
parent.position_valid = false;
// Create one with no heightmaps
ServerMapSector sector(&parent, v2s16(1,1));
UASSERT(sector.getBlockNoCreateNoEx(0) == 0);
UASSERT(sector.getBlockNoCreateNoEx(1) == 0);
MapBlock * bref = sector.createBlankBlock(-2);
UASSERT(sector.getBlockNoCreateNoEx(0) == 0);
UASSERT(sector.getBlockNoCreateNoEx(-2) == bref);
//TODO: Check for AlreadyExistsException
/*bool exception_thrown = false;
try{
sector.getBlock(0);
}
catch(InvalidPositionException &e){
exception_thrown = true;
}
UASSERT(exception_thrown);*/
}
};
#endif
struct TestCollision: public TestBase
{
void Run()
{
/*
axisAlignedCollision
*/
for(s16 bx = -3; bx <= 3; bx++)
for(s16 by = -3; by <= 3; by++)
for(s16 bz = -3; bz <= 3; bz++)
{
// X-
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
v3f v(1, 0, 0);
f32 dtime = 0;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 1.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by, bz, bx-1, by+1, bz+1);
v3f v(-1, 0, 0);
f32 dtime = 0;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by+1.5, bz, bx-1, by+2.5, bz-1);
v3f v(1, 0, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
v3f v(0.5, 0.1, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 3.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx-2, by-1.5, bz, bx-1.5, by+0.5, bz+1);
v3f v(0.5, 0.1, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 3.000) < 0.001);
}
// X+
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
v3f v(-1, 0, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 1.000) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz, bx+3, by+1, bz+1);
v3f v(1, 0, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by, bz+1.5, bx+3, by+1, bz+3.5);
v3f v(-1, 0, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == -1);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
v3f v(-0.5, 0.2, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 1); // Y, not X!
UASSERT(fabs(dtime - 2.500) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+1, by+1, bz+1);
aabb3f m(bx+2, by-1.5, bz, bx+2.5, by-0.5, bz+1);
v3f v(-0.5, 0.3, 0);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 2.000) < 0.001);
}
// TODO: Y-, Y+, Z-, Z+
// misc
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.3, by+2.29, bz+2.29, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.29, by+2.3, bz+2.29, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 1);
UASSERT(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx+2.29, by+2.29, bz+2.3, bx+4.2, by+4.2, bz+4.2);
v3f v(-1./3, -1./3, -1./3);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 2);
UASSERT(fabs(dtime - 0.9) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.3, by-2.29, bz-2.29);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 0);
UASSERT(fabs(dtime - 16.1) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.3, bz-2.29);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 1);
UASSERT(fabs(dtime - 16.1) < 0.001);
}
{
aabb3f s(bx, by, bz, bx+2, by+2, bz+2);
aabb3f m(bx-4.2, by-4.2, bz-4.2, bx-2.29, by-2.29, bz-2.3);
v3f v(1./7, 1./7, 1./7);
f32 dtime;
UASSERT(axisAlignedCollision(s, m, v, 0, dtime) == 2);
UASSERT(fabs(dtime - 16.1) < 0.001);
}
}
}
};
struct TestSocket: public TestBase
{
void Run()
{
const int port = 30003;
UDPSocket socket;
socket.Bind(port);
const char sendbuffer[] = "hello world!";
socket.Send(Address(127,0,0,1,port), sendbuffer, sizeof(sendbuffer));
sleep_ms(50);
char rcvbuffer[256];
memset(rcvbuffer, 0, sizeof(rcvbuffer));
Address sender;
for(;;)
{
int bytes_read = socket.Receive(sender, rcvbuffer, sizeof(rcvbuffer));
if(bytes_read < 0)
break;
}
//FIXME: This fails on some systems
UASSERT(strncmp(sendbuffer, rcvbuffer, sizeof(sendbuffer))==0);
UASSERT(sender.getAddress() == Address(127,0,0,1, 0).getAddress());
}
};
struct TestConnection: public TestBase
{
void TestHelpers()
{
/*
Test helper functions
*/
// Some constants for testing
u32 proto_id = 0x12345678;
u16 peer_id = 123;
u8 channel = 2;
SharedBuffer<u8> data1(1);
data1[0] = 100;
Address a(127,0,0,1, 10);
u16 seqnum = 34352;
con::BufferedPacket p1 = con::makePacket(a, data1,
proto_id, peer_id, channel);
/*
We should now have a packet with this data:
Header:
[0] u32 protocol_id
[4] u16 sender_peer_id
[6] u8 channel
Data:
[7] u8 data1[0]
*/
UASSERT(readU32(&p1.data[0]) == proto_id);
UASSERT(readU16(&p1.data[4]) == peer_id);
UASSERT(readU8(&p1.data[6]) == channel);
UASSERT(readU8(&p1.data[7]) == data1[0]);
//infostream<<"initial data1[0]="<<((u32)data1[0]&0xff)<<std::endl;
SharedBuffer<u8> p2 = con::makeReliablePacket(data1, seqnum);
/*infostream<<"p2.getSize()="<<p2.getSize()<<", data1.getSize()="
<<data1.getSize()<<std::endl;
infostream<<"readU8(&p2[3])="<<readU8(&p2[3])
<<" p2[3]="<<((u32)p2[3]&0xff)<<std::endl;
infostream<<"data1[0]="<<((u32)data1[0]&0xff)<<std::endl;*/
UASSERT(p2.getSize() == 3 + data1.getSize());
UASSERT(readU8(&p2[0]) == TYPE_RELIABLE);
UASSERT(readU16(&p2[1]) == seqnum);
UASSERT(readU8(&p2[3]) == data1[0]);
}
struct Handler : public con::PeerHandler
{
Handler(const char *a_name)
{
count = 0;
last_id = 0;
name = a_name;
}
void peerAdded(con::Peer *peer)
{
infostream<<"Handler("<<name<<")::peerAdded(): "
"id="<<peer->id<<std::endl;
last_id = peer->id;
count++;
}
void deletingPeer(con::Peer *peer, bool timeout)
{
infostream<<"Handler("<<name<<")::deletingPeer(): "
"id="<<peer->id
<<", timeout="<<timeout<<std::endl;
last_id = peer->id;
count--;
}
s32 count;
u16 last_id;
const char *name;
};
void Run()
{
DSTACK("TestConnection::Run");
TestHelpers();
/*
Test some real connections
NOTE: This mostly tests the legacy interface.
*/
u32 proto_id = 0xad26846a;
Handler hand_server("server");
Handler hand_client("client");
infostream<<"** Creating server Connection"<<std::endl;
con::Connection server(proto_id, 512, 5.0, &hand_server);
server.Serve(30001);
infostream<<"** Creating client Connection"<<std::endl;
con::Connection client(proto_id, 512, 5.0, &hand_client);
UASSERT(hand_server.count == 0);
UASSERT(hand_client.count == 0);
sleep_ms(50);
Address server_address(127,0,0,1, 30001);
infostream<<"** running client.Connect()"<<std::endl;
client.Connect(server_address);
sleep_ms(50);
// Client should not have added client yet
UASSERT(hand_client.count == 0);
try
{
u16 peer_id;
SharedBuffer<u8> data;
infostream<<"** running client.Receive()"<<std::endl;
u32 size = client.Receive(peer_id, data);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<std::endl;
}
catch(con::NoIncomingDataException &e)
{
}
// Client should have added server now
UASSERT(hand_client.count == 1);
UASSERT(hand_client.last_id == 1);
// Server should not have added client yet
UASSERT(hand_server.count == 0);
sleep_ms(50);
try
{
u16 peer_id;
SharedBuffer<u8> data;
infostream<<"** running server.Receive()"<<std::endl;
u32 size = server.Receive(peer_id, data);
infostream<<"** Server received: peer_id="<<peer_id
<<", size="<<size
<<std::endl;
}
catch(con::NoIncomingDataException &e)
{
// No actual data received, but the client has
// probably been connected
}
// Client should be the same
UASSERT(hand_client.count == 1);
UASSERT(hand_client.last_id == 1);
// Server should have the client
UASSERT(hand_server.count == 1);
UASSERT(hand_server.last_id == 2);
//sleep_ms(50);
while(client.Connected() == false)
{
try
{
u16 peer_id;
SharedBuffer<u8> data;
infostream<<"** running client.Receive()"<<std::endl;
u32 size = client.Receive(peer_id, data);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<std::endl;
}
catch(con::NoIncomingDataException &e)
{
}
sleep_ms(50);
}
sleep_ms(50);
try
{
u16 peer_id;
SharedBuffer<u8> data;
infostream<<"** running server.Receive()"<<std::endl;
u32 size = server.Receive(peer_id, data);
infostream<<"** Server received: peer_id="<<peer_id
<<", size="<<size
<<std::endl;
}
catch(con::NoIncomingDataException &e)
{
}
#if 1
/*
Simple send-receive test
*/
{
/*u8 data[] = "Hello World!";
u32 datasize = sizeof(data);*/
SharedBuffer<u8> data = SharedBufferFromString("Hello World!");
infostream<<"** running client.Send()"<<std::endl;
client.Send(PEER_ID_SERVER, 0, data, true);
sleep_ms(50);
u16 peer_id;
SharedBuffer<u8> recvdata;
infostream<<"** running server.Receive()"<<std::endl;
u32 size = server.Receive(peer_id, recvdata);
infostream<<"** Server received: peer_id="<<peer_id
<<", size="<<size
<<", data="<<*data
<<std::endl;
UASSERT(memcmp(*data, *recvdata, data.getSize()) == 0);
}
#endif
u16 peer_id_client = 2;
#if 0
/*
Send consequent packets in different order
Not compatible with new Connection, thus commented out.
*/
{
//u8 data1[] = "hello1";
//u8 data2[] = "hello2";
SharedBuffer<u8> data1 = SharedBufferFromString("hello1");
SharedBuffer<u8> data2 = SharedBufferFromString("Hello2");
Address client_address =
server.GetPeerAddress(peer_id_client);
infostream<<"*** Sending packets in wrong order (2,1,2)"
<<std::endl;
u8 chn = 0;
con::Channel *ch = &server.getPeer(peer_id_client)->channels[chn];
u16 sn = ch->next_outgoing_seqnum;
ch->next_outgoing_seqnum = sn+1;
server.Send(peer_id_client, chn, data2, true);
ch->next_outgoing_seqnum = sn;
server.Send(peer_id_client, chn, data1, true);
ch->next_outgoing_seqnum = sn+1;
server.Send(peer_id_client, chn, data2, true);
sleep_ms(50);
infostream<<"*** Receiving the packets"<<std::endl;
u16 peer_id;
SharedBuffer<u8> recvdata;
u32 size;
infostream<<"** running client.Receive()"<<std::endl;
peer_id = 132;
size = client.Receive(peer_id, recvdata);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<", data="<<*recvdata
<<std::endl;
UASSERT(size == data1.getSize());
UASSERT(memcmp(*data1, *recvdata, data1.getSize()) == 0);
UASSERT(peer_id == PEER_ID_SERVER);
infostream<<"** running client.Receive()"<<std::endl;
peer_id = 132;
size = client.Receive(peer_id, recvdata);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<", data="<<*recvdata
<<std::endl;
UASSERT(size == data2.getSize());
UASSERT(memcmp(*data2, *recvdata, data2.getSize()) == 0);
UASSERT(peer_id == PEER_ID_SERVER);
bool got_exception = false;
try
{
infostream<<"** running client.Receive()"<<std::endl;
peer_id = 132;
size = client.Receive(peer_id, recvdata);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<", data="<<*recvdata
<<std::endl;
}
catch(con::NoIncomingDataException &e)
{
infostream<<"** No incoming data for client"<<std::endl;
got_exception = true;
}
UASSERT(got_exception);
}
#endif
#if 0
/*
Send large amounts of packets (infinite test)
Commented out because of infinity.
*/
{
infostream<<"Sending large amounts of packets (infinite test)"<<std::endl;
int sendcount = 0;
for(;;){
int datasize = myrand_range(0,5)==0?myrand_range(100,10000):myrand_range(0,100);
infostream<<"datasize="<<datasize<<std::endl;
SharedBuffer<u8> data1(datasize);
for(u16 i=0; i<datasize; i++)
data1[i] = i/4;
int sendtimes = myrand_range(1,10);
for(int i=0; i<sendtimes; i++){
server.Send(peer_id_client, 0, data1, true);
sendcount++;
}
infostream<<"sendcount="<<sendcount<<std::endl;
//int receivetimes = myrand_range(1,20);
int receivetimes = 20;
for(int i=0; i<receivetimes; i++){
SharedBuffer<u8> recvdata;
u16 peer_id = 132;
u16 size = 0;
bool received = false;
try{
size = client.Receive(peer_id, recvdata);
received = true;
}catch(con::NoIncomingDataException &e){
}
}
}
}
#endif
/*
Send a large packet
*/
{
const int datasize = 30000;
SharedBuffer<u8> data1(datasize);
for(u16 i=0; i<datasize; i++){
data1[i] = i/4;
}
infostream<<"Sending data (size="<<datasize<<"):";
for(int i=0; i<datasize && i<20; i++){
if(i%2==0) infostream<<" ";
char buf[10];
snprintf(buf, 10, "%.2X", ((int)((const char*)*data1)[i])&0xff);
infostream<<buf;
}
if(datasize>20)
infostream<<"...";
infostream<<std::endl;
server.Send(peer_id_client, 0, data1, true);
//sleep_ms(3000);
SharedBuffer<u8> recvdata;
infostream<<"** running client.Receive()"<<std::endl;
u16 peer_id = 132;
u16 size = 0;
bool received = false;
u32 timems0 = porting::getTimeMs();
for(;;){
if(porting::getTimeMs() - timems0 > 5000 || received)
break;
try{
size = client.Receive(peer_id, recvdata);
received = true;
}catch(con::NoIncomingDataException &e){
}
sleep_ms(10);
}
UASSERT(received);
infostream<<"** Client received: peer_id="<<peer_id
<<", size="<<size
<<std::endl;
infostream<<"Received data (size="<<size<<"): ";
for(int i=0; i<size && i<20; i++){
if(i%2==0) infostream<<" ";
char buf[10];
snprintf(buf, 10, "%.2X", ((int)(recvdata[i]))&0xff);
infostream<<buf;
}
if(size>20)
infostream<<"...";
infostream<<std::endl;
UASSERT(memcmp(*data1, *recvdata, data1.getSize()) == 0);
UASSERT(peer_id == PEER_ID_SERVER);
}
// Check peer handlers
UASSERT(hand_client.count == 1);
UASSERT(hand_client.last_id == 1);
UASSERT(hand_server.count == 1);
UASSERT(hand_server.last_id == 2);
//assert(0);
}
};
#define TEST(X)\
{\
X x;\
infostream<<"Running " #X <<std::endl;\
x.Run();\
tests_run++;\
tests_failed += x.test_failed ? 1 : 0;\
}
#define TESTPARAMS(X, ...)\
{\
X x;\
infostream<<"Running " #X <<std::endl;\
x.Run(__VA_ARGS__);\
tests_run++;\
tests_failed += x.test_failed ? 1 : 0;\
}
void run_tests()
{
DSTACK(__FUNCTION_NAME);
int tests_run = 0;
int tests_failed = 0;
// Create item and node definitions
IWritableItemDefManager *idef = createItemDefManager();
IWritableNodeDefManager *ndef = createNodeDefManager();
define_some_nodes(idef, ndef);
infostream<<"run_tests() started"<<std::endl;
TEST(TestUtilities);
TEST(TestSettings);
TEST(TestCompress);
TEST(TestSerialization);
TEST(TestNodedefSerialization);
TESTPARAMS(TestMapNode, ndef);
TESTPARAMS(TestVoxelManipulator, ndef);
TESTPARAMS(TestVoxelAlgorithms, ndef);
TESTPARAMS(TestInventory, idef);
//TEST(TestMapBlock);
//TEST(TestMapSector);
TEST(TestCollision);
if(INTERNET_SIMULATOR == false){
TEST(TestSocket);
dout_con<<"=== BEGIN RUNNING UNIT TESTS FOR CONNECTION ==="<<std::endl;
TEST(TestConnection);
dout_con<<"=== END RUNNING UNIT TESTS FOR CONNECTION ==="<<std::endl;
}
if(tests_failed == 0){
infostream<<"run_tests(): "<<tests_failed<<" / "<<tests_run<<" tests failed."<<std::endl;
infostream<<"run_tests() passed."<<std::endl;
return;
} else {
errorstream<<"run_tests(): "<<tests_failed<<" / "<<tests_run<<" tests failed."<<std::endl;
errorstream<<"run_tests() aborting."<<std::endl;
abort();
}
delete idef;
delete ndef;
}