minetest/src/network/connection.h

851 lines
20 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#pragma once
#include "irrlichttypes_bloated.h"
#include "peerhandler.h"
#include "socket.h"
#include "constants.h"
#include "util/pointer.h"
#include "util/container.h"
#include "util/thread.h"
#include "util/numeric.h"
#include "networkprotocol.h"
#include <iostream>
#include <fstream>
#include <list>
#include <map>
class NetworkPacket;
namespace con
{
class ConnectionReceiveThread;
class ConnectionSendThread;
typedef enum MTProtocols {
MTP_PRIMARY,
MTP_UDP,
MTP_MINETEST_RELIABLE_UDP
} MTProtocols;
#define MAX_UDP_PEERS 65535
#define SEQNUM_MAX 65535
inline bool seqnum_higher(u16 totest, u16 base)
{
if (totest > base)
{
if ((totest - base) > (SEQNUM_MAX/2))
return false;
return true;
}
if ((base - totest) > (SEQNUM_MAX/2))
return true;
return false;
}
inline bool seqnum_in_window(u16 seqnum, u16 next,u16 window_size)
{
u16 window_start = next;
u16 window_end = ( next + window_size ) % (SEQNUM_MAX+1);
if (window_start < window_end) {
return ((seqnum >= window_start) && (seqnum < window_end));
}
return ((seqnum < window_end) || (seqnum >= window_start));
}
static inline float CALC_DTIME(u64 lasttime, u64 curtime)
{
float value = ( curtime - lasttime) / 1000.0;
return MYMAX(MYMIN(value,0.1),0.0);
}
struct BufferedPacket
{
BufferedPacket(u8 *a_data, u32 a_size):
data(a_data, a_size)
{}
BufferedPacket(u32 a_size):
data(a_size)
{}
Buffer<u8> data; // Data of the packet, including headers
float time = 0.0f; // Seconds from buffering the packet or re-sending
float totaltime = 0.0f; // Seconds from buffering the packet
u64 absolute_send_time = -1;
Address address; // Sender or destination
unsigned int resend_count = 0;
};
// This adds the base headers to the data and makes a packet out of it
BufferedPacket makePacket(Address &address, SharedBuffer<u8> data,
u32 protocol_id, session_t sender_peer_id, u8 channel);
// Depending on size, make a TYPE_ORIGINAL or TYPE_SPLIT packet
// Increments split_seqnum if a split packet is made
void makeAutoSplitPacket(SharedBuffer<u8> data, u32 chunksize_max,
u16 &split_seqnum, std::list<SharedBuffer<u8>> *list);
// Add the TYPE_RELIABLE header to the data
SharedBuffer<u8> makeReliablePacket(SharedBuffer<u8> data, u16 seqnum);
struct IncomingSplitPacket
{
IncomingSplitPacket(u32 cc, bool r):
chunk_count(cc), reliable(r) {}
IncomingSplitPacket() = delete;
// Key is chunk number, value is data without headers
std::map<u16, SharedBuffer<u8>> chunks;
u32 chunk_count;
float time = 0.0f; // Seconds from adding
bool reliable = false; // If true, isn't deleted on timeout
bool allReceived() const
{
return (chunks.size() == chunk_count);
}
};
/*
=== NOTES ===
A packet is sent through a channel to a peer with a basic header:
TODO: Should we have a receiver_peer_id also?
Header (7 bytes):
[0] u32 protocol_id
[4] session_t sender_peer_id
[6] u8 channel
sender_peer_id:
Unique to each peer.
value 0 (PEER_ID_INEXISTENT) is reserved for making new connections
value 1 (PEER_ID_SERVER) is reserved for server
these constants are defined in constants.h
channel:
The lower the number, the higher the priority is.
Only channels 0, 1 and 2 exist.
*/
#define BASE_HEADER_SIZE 7
#define CHANNEL_COUNT 3
/*
Packet types:
CONTROL: This is a packet used by the protocol.
- When this is processed, nothing is handed to the user.
Header (2 byte):
[0] u8 type
[1] u8 controltype
controltype and data description:
CONTROLTYPE_ACK
[2] u16 seqnum
CONTROLTYPE_SET_PEER_ID
[2] session_t peer_id_new
CONTROLTYPE_PING
- There is no actual reply, but this can be sent in a reliable
packet to get a reply
CONTROLTYPE_DISCO
*/
//#define TYPE_CONTROL 0
#define CONTROLTYPE_ACK 0
#define CONTROLTYPE_SET_PEER_ID 1
#define CONTROLTYPE_PING 2
#define CONTROLTYPE_DISCO 3
#define CONTROLTYPE_ENABLE_BIG_SEND_WINDOW 4
/*
ORIGINAL: This is a plain packet with no control and no error
checking at all.
- When this is processed, it is directly handed to the user.
Header (1 byte):
[0] u8 type
*/
//#define TYPE_ORIGINAL 1
#define ORIGINAL_HEADER_SIZE 1
/*
SPLIT: These are sequences of packets forming one bigger piece of
data.
- When processed and all the packet_nums 0...packet_count-1 are
present (this should be buffered), the resulting data shall be
directly handed to the user.
- If the data fails to come up in a reasonable time, the buffer shall
be silently discarded.
- These can be sent as-is or atop of a RELIABLE packet stream.
Header (7 bytes):
[0] u8 type
[1] u16 seqnum
[3] u16 chunk_count
[5] u16 chunk_num
*/
//#define TYPE_SPLIT 2
/*
RELIABLE: Delivery of all RELIABLE packets shall be forced by ACKs,
and they shall be delivered in the same order as sent. This is done
with a buffer in the receiving and transmitting end.
- When this is processed, the contents of each packet is recursively
processed as packets.
Header (3 bytes):
[0] u8 type
[1] u16 seqnum
*/
//#define TYPE_RELIABLE 3
#define RELIABLE_HEADER_SIZE 3
#define SEQNUM_INITIAL 65500
enum PacketType: u8 {
PACKET_TYPE_CONTROL = 0,
PACKET_TYPE_ORIGINAL = 1,
PACKET_TYPE_SPLIT = 2,
PACKET_TYPE_RELIABLE = 3,
PACKET_TYPE_MAX
};
/*
A buffer which stores reliable packets and sorts them internally
for fast access to the smallest one.
*/
typedef std::list<BufferedPacket>::iterator RPBSearchResult;
class ReliablePacketBuffer
{
public:
ReliablePacketBuffer() = default;
bool getFirstSeqnum(u16& result);
BufferedPacket popFirst();
BufferedPacket popSeqnum(u16 seqnum);
void insert(BufferedPacket &p,u16 next_expected);
void incrementTimeouts(float dtime);
std::list<BufferedPacket> getTimedOuts(float timeout,
unsigned int max_packets);
void print();
bool empty();
bool containsPacket(u16 seqnum);
RPBSearchResult notFound();
u32 size();
private:
RPBSearchResult findPacket(u16 seqnum);
std::list<BufferedPacket> m_list;
u32 m_list_size = 0;
u16 m_oldest_non_answered_ack;
std::mutex m_list_mutex;
};
/*
A buffer for reconstructing split packets
*/
class IncomingSplitBuffer
{
public:
~IncomingSplitBuffer();
/*
Returns a reference counted buffer of length != 0 when a full split
packet is constructed. If not, returns one of length 0.
*/
SharedBuffer<u8> insert(const BufferedPacket &p, bool reliable);
void removeUnreliableTimedOuts(float dtime, float timeout);
private:
// Key is seqnum
std::map<u16, IncomingSplitPacket*> m_buf;
std::mutex m_map_mutex;
};
struct OutgoingPacket
{
session_t peer_id;
u8 channelnum;
SharedBuffer<u8> data;
bool reliable;
bool ack;
OutgoingPacket(session_t peer_id_, u8 channelnum_, const SharedBuffer<u8> &data_,
bool reliable_,bool ack_=false):
peer_id(peer_id_),
channelnum(channelnum_),
data(data_),
reliable(reliable_),
ack(ack_)
{
}
};
enum ConnectionCommandType{
CONNCMD_NONE,
CONNCMD_SERVE,
CONNCMD_CONNECT,
CONNCMD_DISCONNECT,
CONNCMD_DISCONNECT_PEER,
CONNCMD_SEND,
CONNCMD_SEND_TO_ALL,
CONCMD_ACK,
CONCMD_CREATE_PEER,
CONCMD_DISABLE_LEGACY
};
struct ConnectionCommand
{
enum ConnectionCommandType type = CONNCMD_NONE;
Address address;
session_t peer_id = PEER_ID_INEXISTENT;
u8 channelnum = 0;
Buffer<u8> data;
bool reliable = false;
bool raw = false;
ConnectionCommand() = default;
ConnectionCommand &operator=(const ConnectionCommand &other)
{
type = other.type;
address = other.address;
peer_id = other.peer_id;
channelnum = other.channelnum;
// We must copy the buffer here to prevent race condition
data = SharedBuffer<u8>(*other.data, other.data.getSize());
reliable = other.reliable;
raw = other.raw;
return *this;
}
void serve(Address address_)
{
type = CONNCMD_SERVE;
address = address_;
}
void connect(Address address_)
{
type = CONNCMD_CONNECT;
address = address_;
}
void disconnect()
{
type = CONNCMD_DISCONNECT;
}
void disconnect_peer(session_t peer_id_)
{
type = CONNCMD_DISCONNECT_PEER;
peer_id = peer_id_;
}
void send(session_t peer_id_, u8 channelnum_, NetworkPacket *pkt, bool reliable_);
void ack(session_t peer_id_, u8 channelnum_, const SharedBuffer<u8> &data_)
{
type = CONCMD_ACK;
peer_id = peer_id_;
channelnum = channelnum_;
data = data_;
reliable = false;
}
void createPeer(session_t peer_id_, const SharedBuffer<u8> &data_)
{
type = CONCMD_CREATE_PEER;
peer_id = peer_id_;
data = data_;
channelnum = 0;
reliable = true;
raw = true;
}
void disableLegacy(session_t peer_id_, const SharedBuffer<u8> &data_)
{
type = CONCMD_DISABLE_LEGACY;
peer_id = peer_id_;
data = data_;
channelnum = 0;
reliable = true;
raw = true;
}
};
/* maximum window size to use, 0xFFFF is theoretical maximum don't think about
* touching it, the less you're away from it the more likely data corruption
* will occur
*/
#define MAX_RELIABLE_WINDOW_SIZE 0x8000
/* starting value for window size */
#define MIN_RELIABLE_WINDOW_SIZE 0x40
class Channel
{
public:
u16 readNextIncomingSeqNum();
u16 incNextIncomingSeqNum();
u16 getOutgoingSequenceNumber(bool& successfull);
u16 readOutgoingSequenceNumber();
bool putBackSequenceNumber(u16);
u16 readNextSplitSeqNum();
void setNextSplitSeqNum(u16 seqnum);
// This is for buffering the incoming packets that are coming in
// the wrong order
ReliablePacketBuffer incoming_reliables;
// This is for buffering the sent packets so that the sender can
// re-send them if no ACK is received
ReliablePacketBuffer outgoing_reliables_sent;
//queued reliable packets
std::queue<BufferedPacket> queued_reliables;
//queue commands prior splitting to packets
std::deque<ConnectionCommand> queued_commands;
IncomingSplitBuffer incoming_splits;
Channel() = default;
~Channel() = default;
void UpdatePacketLossCounter(unsigned int count);
void UpdatePacketTooLateCounter();
void UpdateBytesSent(unsigned int bytes,unsigned int packages=1);
void UpdateBytesLost(unsigned int bytes);
void UpdateBytesReceived(unsigned int bytes);
void UpdateTimers(float dtime, bool legacy_peer);
const float getCurrentDownloadRateKB()
{ MutexAutoLock lock(m_internal_mutex); return cur_kbps; };
const float getMaxDownloadRateKB()
{ MutexAutoLock lock(m_internal_mutex); return max_kbps; };
const float getCurrentLossRateKB()
{ MutexAutoLock lock(m_internal_mutex); return cur_kbps_lost; };
const float getMaxLossRateKB()
{ MutexAutoLock lock(m_internal_mutex); return max_kbps_lost; };
const float getCurrentIncomingRateKB()
{ MutexAutoLock lock(m_internal_mutex); return cur_incoming_kbps; };
const float getMaxIncomingRateKB()
{ MutexAutoLock lock(m_internal_mutex); return max_incoming_kbps; };
const float getAvgDownloadRateKB()
{ MutexAutoLock lock(m_internal_mutex); return avg_kbps; };
const float getAvgLossRateKB()
{ MutexAutoLock lock(m_internal_mutex); return avg_kbps_lost; };
const float getAvgIncomingRateKB()
{ MutexAutoLock lock(m_internal_mutex); return avg_incoming_kbps; };
const unsigned int getWindowSize() const { return window_size; };
void setWindowSize(unsigned int size) { window_size = size; };
private:
std::mutex m_internal_mutex;
int window_size = MIN_RELIABLE_WINDOW_SIZE;
u16 next_incoming_seqnum = SEQNUM_INITIAL;
u16 next_outgoing_seqnum = SEQNUM_INITIAL;
u16 next_outgoing_split_seqnum = SEQNUM_INITIAL;
unsigned int current_packet_loss = 0;
unsigned int current_packet_too_late = 0;
unsigned int current_packet_successfull = 0;
float packet_loss_counter = 0.0f;
unsigned int current_bytes_transfered = 0;
unsigned int current_bytes_received = 0;
unsigned int current_bytes_lost = 0;
float max_kbps = 0.0f;
float cur_kbps = 0.0f;
float avg_kbps = 0.0f;
float max_incoming_kbps = 0.0f;
float cur_incoming_kbps = 0.0f;
float avg_incoming_kbps = 0.0f;
float max_kbps_lost = 0.0f;
float cur_kbps_lost = 0.0f;
float avg_kbps_lost = 0.0f;
float bpm_counter = 0.0f;
unsigned int rate_samples = 0;
};
class Peer;
class PeerHelper
{
public:
PeerHelper() = default;
PeerHelper(Peer* peer);
~PeerHelper();
PeerHelper& operator=(Peer* peer);
Peer* operator->() const;
bool operator!();
Peer* operator&() const;
bool operator!=(void* ptr);
private:
Peer *m_peer = nullptr;
};
class Connection;
typedef enum {
CUR_DL_RATE,
AVG_DL_RATE,
CUR_INC_RATE,
AVG_INC_RATE,
CUR_LOSS_RATE,
AVG_LOSS_RATE,
} rate_stat_type;
class Peer {
public:
friend class PeerHelper;
Peer(Address address_,u16 id_,Connection* connection) :
id(id_),
m_connection(connection),
address(address_),
m_last_timeout_check(porting::getTimeMs())
{
};
virtual ~Peer() {
MutexAutoLock usage_lock(m_exclusive_access_mutex);
FATAL_ERROR_IF(m_usage != 0, "Reference counting failure");
};
// Unique id of the peer
u16 id;
void Drop();
virtual void PutReliableSendCommand(ConnectionCommand &c,
unsigned int max_packet_size) {};
virtual bool getAddress(MTProtocols type, Address& toset) = 0;
bool isPendingDeletion()
{ MutexAutoLock lock(m_exclusive_access_mutex); return m_pending_deletion; };
void ResetTimeout()
{MutexAutoLock lock(m_exclusive_access_mutex); m_timeout_counter = 0.0; };
bool isTimedOut(float timeout);
unsigned int m_increment_packets_remaining = 9;
unsigned int m_increment_bytes_remaining = 0;
virtual u16 getNextSplitSequenceNumber(u8 channel) { return 0; };
virtual void setNextSplitSequenceNumber(u8 channel, u16 seqnum) {};
virtual SharedBuffer<u8> addSplitPacket(u8 channel, const BufferedPacket &toadd,
bool reliable)
{
fprintf(stderr,"Peer: addSplitPacket called, this is supposed to be never called!\n");
return SharedBuffer<u8>(0);
};
virtual bool Ping(float dtime, SharedBuffer<u8>& data) { return false; };
virtual float getStat(rtt_stat_type type) const {
switch (type) {
case MIN_RTT:
return m_rtt.min_rtt;
case MAX_RTT:
return m_rtt.max_rtt;
case AVG_RTT:
return m_rtt.avg_rtt;
case MIN_JITTER:
return m_rtt.jitter_min;
case MAX_JITTER:
return m_rtt.jitter_max;
case AVG_JITTER:
return m_rtt.jitter_avg;
}
return -1;
}
protected:
virtual void reportRTT(float rtt) {};
void RTTStatistics(float rtt,
const std::string &profiler_id = "",
unsigned int num_samples = 1000);
bool IncUseCount();
void DecUseCount();
std::mutex m_exclusive_access_mutex;
bool m_pending_deletion = false;
Connection* m_connection;
// Address of the peer
Address address;
// Ping timer
float m_ping_timer = 0.0f;
private:
struct rttstats {
float jitter_min = FLT_MAX;
float jitter_max = 0.0f;
float jitter_avg = -1.0f;
float min_rtt = FLT_MAX;
float max_rtt = 0.0f;
float avg_rtt = -1.0f;
rttstats() = default;
};
rttstats m_rtt;
float m_last_rtt = -1.0f;
// current usage count
unsigned int m_usage = 0;
// Seconds from last receive
float m_timeout_counter = 0.0f;
u64 m_last_timeout_check;
};
class UDPPeer : public Peer
{
public:
friend class PeerHelper;
friend class ConnectionReceiveThread;
friend class ConnectionSendThread;
friend class Connection;
UDPPeer(u16 a_id, Address a_address, Connection* connection);
virtual ~UDPPeer() = default;
void PutReliableSendCommand(ConnectionCommand &c,
unsigned int max_packet_size);
bool getAddress(MTProtocols type, Address& toset);
void setNonLegacyPeer();
bool getLegacyPeer()
{ return m_legacy_peer; }
u16 getNextSplitSequenceNumber(u8 channel);
void setNextSplitSequenceNumber(u8 channel, u16 seqnum);
SharedBuffer<u8> addSplitPacket(u8 channel, const BufferedPacket &toadd,
bool reliable);
protected:
/*
Calculates avg_rtt and resend_timeout.
rtt=-1 only recalculates resend_timeout
*/
void reportRTT(float rtt);
void RunCommandQueues(
unsigned int max_packet_size,
unsigned int maxcommands,
unsigned int maxtransfer);
float getResendTimeout()
{ MutexAutoLock lock(m_exclusive_access_mutex); return resend_timeout; }
void setResendTimeout(float timeout)
{ MutexAutoLock lock(m_exclusive_access_mutex); resend_timeout = timeout; }
bool Ping(float dtime,SharedBuffer<u8>& data);
Channel channels[CHANNEL_COUNT];
bool m_pending_disconnect = false;
private:
// This is changed dynamically
float resend_timeout = 0.5;
bool processReliableSendCommand(
ConnectionCommand &c,
unsigned int max_packet_size);
bool m_legacy_peer = true;
};
/*
Connection
*/
enum ConnectionEventType{
CONNEVENT_NONE,
CONNEVENT_DATA_RECEIVED,
CONNEVENT_PEER_ADDED,
CONNEVENT_PEER_REMOVED,
CONNEVENT_BIND_FAILED,
};
struct ConnectionEvent
{
enum ConnectionEventType type = CONNEVENT_NONE;
session_t peer_id = 0;
Buffer<u8> data;
bool timeout = false;
Address address;
ConnectionEvent() = default;
std::string describe()
{
switch(type) {
case CONNEVENT_NONE:
return "CONNEVENT_NONE";
case CONNEVENT_DATA_RECEIVED:
return "CONNEVENT_DATA_RECEIVED";
case CONNEVENT_PEER_ADDED:
return "CONNEVENT_PEER_ADDED";
case CONNEVENT_PEER_REMOVED:
return "CONNEVENT_PEER_REMOVED";
case CONNEVENT_BIND_FAILED:
return "CONNEVENT_BIND_FAILED";
}
return "Invalid ConnectionEvent";
}
void dataReceived(session_t peer_id_, const SharedBuffer<u8> &data_)
{
type = CONNEVENT_DATA_RECEIVED;
peer_id = peer_id_;
data = data_;
}
void peerAdded(session_t peer_id_, Address address_)
{
type = CONNEVENT_PEER_ADDED;
peer_id = peer_id_;
address = address_;
}
void peerRemoved(session_t peer_id_, bool timeout_, Address address_)
{
type = CONNEVENT_PEER_REMOVED;
peer_id = peer_id_;
timeout = timeout_;
address = address_;
}
void bindFailed()
{
type = CONNEVENT_BIND_FAILED;
}
};
class PeerHandler;
class Connection
{
public:
friend class ConnectionSendThread;
friend class ConnectionReceiveThread;
Connection(u32 protocol_id, u32 max_packet_size, float timeout, bool ipv6,
PeerHandler *peerhandler);
~Connection();
/* Interface */
ConnectionEvent waitEvent(u32 timeout_ms);
void putCommand(ConnectionCommand &c);
void SetTimeoutMs(u32 timeout) { m_bc_receive_timeout = timeout; }
void Serve(Address bind_addr);
void Connect(Address address);
bool Connected();
void Disconnect();
void Receive(NetworkPacket* pkt);
void Send(session_t peer_id, u8 channelnum, NetworkPacket *pkt, bool reliable);
session_t GetPeerID() const { return m_peer_id; }
Address GetPeerAddress(session_t peer_id);
float getPeerStat(session_t peer_id, rtt_stat_type type);
float getLocalStat(rate_stat_type type);
const u32 GetProtocolID() const { return m_protocol_id; };
const std::string getDesc();
void DisconnectPeer(session_t peer_id);
protected:
PeerHelper getPeerNoEx(session_t peer_id);
u16 lookupPeer(Address& sender);
u16 createPeer(Address& sender, MTProtocols protocol, int fd);
UDPPeer* createServerPeer(Address& sender);
bool deletePeer(session_t peer_id, bool timeout);
void SetPeerID(session_t id) { m_peer_id = id; }
void sendAck(session_t peer_id, u8 channelnum, u16 seqnum);
void PrintInfo(std::ostream &out);
std::list<session_t> getPeerIDs()
{
MutexAutoLock peerlock(m_peers_mutex);
return m_peer_ids;
}
UDPSocket m_udpSocket;
MutexedQueue<ConnectionCommand> m_command_queue;
void putEvent(ConnectionEvent &e);
void TriggerSend();
private:
MutexedQueue<ConnectionEvent> m_event_queue;
session_t m_peer_id = 0;
u32 m_protocol_id;
std::map<session_t, Peer *> m_peers;
std::list<session_t> m_peer_ids;
std::mutex m_peers_mutex;
std::unique_ptr<ConnectionSendThread> m_sendThread;
std::unique_ptr<ConnectionReceiveThread> m_receiveThread;
std::mutex m_info_mutex;
// Backwards compatibility
PeerHandler *m_bc_peerhandler;
u32 m_bc_receive_timeout = 0;
bool m_shutting_down = false;
session_t m_next_remote_peer_id = 2;
};
} // namespace