#include #include #include #include #include #include #include #include #include #include #include "TileGenerator.h" #include "config.h" #include "PlayerAttributes.h" #include "BlockDecoder.h" #include "util.h" #include "db-sqlite3.h" #if USE_POSTGRESQL #include "db-postgresql.h" #endif #if USE_LEVELDB #include "db-leveldb.h" #endif #if USE_REDIS #include "db-redis.h" #endif using namespace std; template static inline T mymax(T a, T b) { return (a > b) ? a : b; } template static inline T mymin(T a, T b) { return (a > b) ? b : a; } // rounds n (away from 0) to a multiple of f while preserving the sign of n static int round_multiple_nosign(int n, int f) { int abs_n, sign; abs_n = (n >= 0) ? n : -n; sign = (n >= 0) ? 1 : -1; if (abs_n % f == 0) return n; // n == abs_n * sign else return sign * (abs_n + f - (abs_n % f)); } static inline unsigned int colorSafeBounds (int channel) { return mymin(mymax(channel, 0), 255); } static Color mixColors(Color a, Color b) { Color result; double a1 = a.a / 255.0; double a2 = b.a / 255.0; result.r = (int) (a1 * a.r + a2 * (1 - a1) * b.r); result.g = (int) (a1 * a.g + a2 * (1 - a1) * b.g); result.b = (int) (a1 * a.b + a2 * (1 - a1) * b.b); result.a = (int) (255 * (a1 + a2 * (1 - a1))); return result; } TileGenerator::TileGenerator(): m_bgColor(255, 255, 255), m_scaleColor(0, 0, 0), m_originColor(255, 0, 0), m_playerColor(255, 0, 0), m_drawOrigin(false), m_drawPlayers(false), m_drawScale(false), m_drawAlpha(false), m_shading(true), m_dontWriteEmpty(false), m_backend(""), m_xBorder(0), m_yBorder(0), m_db(NULL), m_image(NULL), m_xMin(INT_MAX), m_xMax(INT_MIN), m_zMin(INT_MAX), m_zMax(INT_MIN), m_yMin(INT16_MIN), m_yMax(INT16_MAX), m_geomX(-2048), m_geomY(-2048), m_geomX2(2048), m_geomY2(2048), m_exhaustiveSearch(EXH_AUTO), m_zoom(1), m_scales(SCALE_LEFT | SCALE_TOP) { } TileGenerator::~TileGenerator() { closeDatabase(); } void TileGenerator::setBgColor(const std::string &bgColor) { m_bgColor = parseColor(bgColor); } void TileGenerator::setScaleColor(const std::string &scaleColor) { m_scaleColor = parseColor(scaleColor); } void TileGenerator::setOriginColor(const std::string &originColor) { m_originColor = parseColor(originColor); } void TileGenerator::setPlayerColor(const std::string &playerColor) { m_playerColor = parseColor(playerColor); } void TileGenerator::setZoom(int zoom) { if (zoom < 1) throw std::runtime_error("Zoom level needs to be a number: 1 or higher"); m_zoom = zoom; } void TileGenerator::setScales(uint flags) { m_scales = flags; } Color TileGenerator::parseColor(const std::string &color) { Color parsed; if (color.length() != 7) throw std::runtime_error("Color needs to be 7 characters long"); if (color[0] != '#') throw std::runtime_error("Color needs to begin with #"); unsigned long col = strtoul(color.c_str() + 1, NULL, 16); parsed.b = col & 0xff; parsed.g = (col >> 8) & 0xff; parsed.r = (col >> 16) & 0xff; parsed.a = 255; return parsed; } void TileGenerator::setDrawOrigin(bool drawOrigin) { m_drawOrigin = drawOrigin; } void TileGenerator::setDrawPlayers(bool drawPlayers) { m_drawPlayers = drawPlayers; } void TileGenerator::setDrawScale(bool drawScale) { m_drawScale = drawScale; } void TileGenerator::setDrawAlpha(bool drawAlpha) { m_drawAlpha = drawAlpha; } void TileGenerator::setShading(bool shading) { m_shading = shading; } void TileGenerator::setBackend(std::string backend) { m_backend = backend; } void TileGenerator::setGeometry(int x, int y, int w, int h) { assert(w > 0 && h > 0); m_geomX = round_multiple_nosign(x, 16) / 16; m_geomY = round_multiple_nosign(y, 16) / 16; m_geomX2 = round_multiple_nosign(x + w, 16) / 16; m_geomY2 = round_multiple_nosign(y + h, 16) / 16; } void TileGenerator::setMinY(int y) { m_yMin = y; if (m_yMin > m_yMax) std::swap(m_yMin, m_yMax); } void TileGenerator::setMaxY(int y) { m_yMax = y; if (m_yMin > m_yMax) std::swap(m_yMin, m_yMax); } void TileGenerator::setExhaustiveSearch(int mode) { m_exhaustiveSearch = mode; } void TileGenerator::parseColorsFile(const std::string &fileName) { ifstream in; in.open(fileName.c_str(), ifstream::in); if (!in.is_open()) throw std::runtime_error("Specified colors file could not be found"); parseColorsStream(in); } void TileGenerator::printGeometry(const std::string &input) { string input_path = input; if (input_path[input.length() - 1] != PATH_SEPARATOR) { input_path += PATH_SEPARATOR; } setExhaustiveSearch(EXH_NEVER); openDb(input_path); loadBlocks(); std::cout << "Map extent: " << m_xMin*16 << ":" << m_zMin*16 << "+" << (m_xMax - m_xMin+1)*16 << "+" << (m_zMax - m_zMin+1)*16 << std::endl; closeDatabase(); } void TileGenerator::setDontWriteEmpty(bool f) { m_dontWriteEmpty = f; } void TileGenerator::generate(const std::string &input, const std::string &output) { string input_path = input; if (input_path[input.length() - 1] != PATH_SEPARATOR) { input_path += PATH_SEPARATOR; } if (m_dontWriteEmpty) // FIXME: possible too, just needs to be done differently setExhaustiveSearch(EXH_NEVER); openDb(input_path); loadBlocks(); if (m_dontWriteEmpty && m_positions.empty()) { closeDatabase(); return; } createImage(); renderMap(); closeDatabase(); if (m_drawScale) { renderScale(); } if (m_drawOrigin) { renderOrigin(); } if (m_drawPlayers) { renderPlayers(input_path); } writeImage(output); printUnknown(); } void TileGenerator::parseColorsStream(std::istream &in) { char line[512]; while (in.good()) { in.getline(line, sizeof(line)); for(char *p = line; *p; p++) { if(*p != '#') continue; *p = '\0'; // Cut off at the first # break; } if(strlen(line) == 0) continue; char name[128 + 1] = {0}; unsigned int r, g, b, a, t; a = 255; t = 0; int items = sscanf(line, "%128s %u %u %u %u %u", name, &r, &g, &b, &a, &t); if(items < 4) { std::cerr << "Failed to parse color entry '" << line << "'" << std::endl; continue; } ColorEntry color(r, g, b, a, t); m_colorMap[name] = color; } } void TileGenerator::openDb(const std::string &input) { std::string backend = m_backend; if(backend == "") { std::ifstream ifs((input + "/world.mt").c_str()); if(!ifs.good()) throw std::runtime_error("Failed to read world.mt"); backend = read_setting("backend", ifs); ifs.close(); } if(backend == "sqlite3") m_db = new DBSQLite3(input); #if USE_POSTGRESQL else if(backend == "postgresql") m_db = new DBPostgreSQL(input); #endif #if USE_LEVELDB else if(backend == "leveldb") m_db = new DBLevelDB(input); #endif #if USE_REDIS else if(backend == "redis") m_db = new DBRedis(input); #endif else throw std::runtime_error(((std::string) "Unknown map backend: ") + backend); // Determine how we're going to traverse the database (heuristic) if (m_exhaustiveSearch == EXH_AUTO) { using u64 = uint64_t; u64 y_range = (m_yMax / 16 + 1) - (m_yMin / 16); u64 blocks = (u64)(m_geomX2 - m_geomX) * y_range * (u64)(m_geomY2 - m_geomY); #ifndef NDEBUG std::cout << "Heuristic parameters:" << " preferRangeQueries()=" << m_db->preferRangeQueries() << " y_range=" << y_range << " blocks=" << blocks << std::endl; #endif if (m_db->preferRangeQueries()) m_exhaustiveSearch = EXH_NEVER; else if (blocks < 200000) m_exhaustiveSearch = EXH_FULL; else if (y_range < 42) m_exhaustiveSearch = EXH_Y; else m_exhaustiveSearch = EXH_NEVER; } else if (m_exhaustiveSearch == EXH_FULL || m_exhaustiveSearch == EXH_Y) { if (m_db->preferRangeQueries()) { std::cerr << "Note: The current database backend supports efficient " "range queries, forcing exhaustive search should always result " " in worse performance." << std::endl; } } assert(m_exhaustiveSearch != EXH_AUTO); } void TileGenerator::closeDatabase() { delete m_db; m_db = NULL; } void TileGenerator::loadBlocks() { const int16_t yMax = m_yMax / 16 + 1; if (m_exhaustiveSearch == EXH_NEVER || m_exhaustiveSearch == EXH_Y) { std::vector vec = m_db->getBlockPos( BlockPos(m_geomX, m_yMin / 16, m_geomY), BlockPos(m_geomX2, yMax, m_geomY2) ); for (auto pos : vec) { assert(pos.x >= m_geomX && pos.x < m_geomX2); assert(pos.y >= m_yMin / 16 && pos.y < yMax); assert(pos.z >= m_geomY && pos.z < m_geomY2); // Adjust minimum and maximum positions to the nearest block if (pos.x < m_xMin) m_xMin = pos.x; if (pos.x > m_xMax) m_xMax = pos.x; if (pos.z < m_zMin) m_zMin = pos.z; if (pos.z > m_zMax) m_zMax = pos.z; m_positions[pos.z].emplace(pos.x); } #ifndef NDEBUG int count = 0; for (const auto &it : m_positions) count += it.second.size(); std::cout << "Loaded " << count << " positions (across Z: " << m_positions.size() << ") for rendering" << std::endl; #endif } } void TileGenerator::createImage() { const int scale_d = 40; // pixels reserved for a scale if(!m_drawScale) m_scales = 0; // If a geometry is explicitly set, set the bounding box to the requested geometry // instead of cropping to the content. This way we will always output a full tile // of the correct size. if (m_geomX > -2048 && m_geomX2 < 2048) { m_xMin = m_geomX; m_xMax = m_geomX2-1; } if (m_geomY > -2048 && m_geomY2 < 2048) { m_zMin = m_geomY; m_zMax = m_geomY2-1; } m_mapWidth = (m_xMax - m_xMin + 1) * 16; m_mapHeight = (m_zMax - m_zMin + 1) * 16; m_xBorder = (m_scales & SCALE_LEFT) ? scale_d : 0; m_yBorder = (m_scales & SCALE_TOP) ? scale_d : 0; m_blockPixelAttributes.setWidth(m_mapWidth); int image_width, image_height; image_width = (m_mapWidth * m_zoom) + m_xBorder; image_width += (m_scales & SCALE_RIGHT) ? scale_d : 0; image_height = (m_mapHeight * m_zoom) + m_yBorder; image_height += (m_scales & SCALE_BOTTOM) ? scale_d : 0; if(image_width > 4096 || image_height > 4096) { std::cerr << "Warning: The width or height of the image to be created exceeds 4096 pixels!" << " (Dimensions: " << image_width << "x" << image_height << ")" << std::endl; } m_image = new Image(image_width, image_height); m_image->drawFilledRect(0, 0, image_width, image_height, m_bgColor); // Background } void TileGenerator::renderMap() { BlockDecoder blk; const int16_t yMax = m_yMax / 16 + 1; auto renderSingle = [&] (int16_t xPos, int16_t zPos, BlockList &blockStack) { m_readPixels.reset(); m_readInfo.reset(); for (int i = 0; i < 16; i++) { for (int j = 0; j < 16; j++) { m_color[i][j] = m_bgColor; // This will be drawn by renderMapBlockBottom() for y-rows with only 'air', 'ignore' or unknown nodes if --drawalpha is used m_color[i][j].a = 0; // ..but set alpha to 0 to tell renderMapBlock() not to use this color to mix a shade m_thickness[i][j] = 0; } } for (const auto &it : blockStack) { const BlockPos pos = it.first; assert(pos.x == xPos && pos.z == zPos); assert(pos.y >= m_yMin / 16 && pos.y < yMax); blk.reset(); blk.decode(it.second); if (blk.isEmpty()) continue; renderMapBlock(blk, pos); // Exit out if all pixels for this MapBlock are covered if (m_readPixels.full()) break; } if (!m_readPixels.full()) renderMapBlockBottom(blockStack.begin()->first); }; auto postRenderRow = [&] (int16_t zPos) { if (m_shading) renderShading(zPos); }; if (m_exhaustiveSearch == EXH_NEVER) { for (auto it = m_positions.rbegin(); it != m_positions.rend(); ++it) { int16_t zPos = it->first; for (auto it2 = it->second.rbegin(); it2 != it->second.rend(); ++it2) { int16_t xPos = *it2; BlockList blockStack; m_db->getBlocksOnXZ(blockStack, xPos, zPos, m_yMin / 16, yMax); blockStack.sort(); renderSingle(xPos, zPos, blockStack); } postRenderRow(zPos); } } else if (m_exhaustiveSearch == EXH_Y) { #ifndef NDEBUG std::cerr << "Exhaustively searching height of " << (yMax - (m_yMin / 16)) << " blocks" << std::endl; #endif std::vector positions; positions.reserve(yMax - (m_yMin / 16)); for (auto it = m_positions.rbegin(); it != m_positions.rend(); ++it) { int16_t zPos = it->first; for (auto it2 = it->second.rbegin(); it2 != it->second.rend(); ++it2) { int16_t xPos = *it2; positions.clear(); for (int16_t yPos = m_yMin / 16; yPos < yMax; yPos++) positions.emplace_back(xPos, yPos, zPos); BlockList blockStack; m_db->getBlocksByPos(blockStack, positions); blockStack.sort(); renderSingle(xPos, zPos, blockStack); } postRenderRow(zPos); } } else if (m_exhaustiveSearch == EXH_FULL) { #ifndef NDEBUG std::cerr << "Exhaustively searching " << (m_geomX2 - m_geomX) << "x" << (yMax - (m_yMin / 16)) << "x" << (m_geomY2 - m_geomY) << " blocks" << std::endl; #endif std::vector positions; positions.reserve(yMax - (m_yMin / 16)); for (int16_t zPos = m_geomY2 - 1; zPos >= m_geomY; zPos--) { for (int16_t xPos = m_geomX2 - 1; xPos >= m_geomX; xPos--) { positions.clear(); for (int16_t yPos = m_yMin / 16; yPos < yMax; yPos++) positions.emplace_back(xPos, yPos, zPos); BlockList blockStack; m_db->getBlocksByPos(blockStack, positions); blockStack.sort(); renderSingle(xPos, zPos, blockStack); } postRenderRow(zPos); } } } void TileGenerator::renderMapBlock(const BlockDecoder &blk, const BlockPos &pos) { int xBegin = (pos.x - m_xMin) * 16; int zBegin = (m_zMax - pos.z) * 16; int minY = (pos.y * 16 > m_yMin) ? 0 : m_yMin - pos.y * 16; int maxY = (pos.y * 16 < m_yMax) ? 15 : m_yMax - pos.y * 16; for (int z = 0; z < 16; ++z) { int imageY = zBegin + 15 - z; for (int x = 0; x < 16; ++x) { if (m_readPixels.get(x, z)) continue; int imageX = xBegin + x; for (int y = maxY; y >= minY; --y) { string name = blk.getNode(x, y, z); if (name == "") continue; ColorMap::const_iterator it = m_colorMap.find(name); if (it == m_colorMap.end()) { m_unknownNodes.insert(name); continue; } const Color c = it->second.to_color(); if (m_drawAlpha) { if (m_color[z][x].a == 0) m_color[z][x] = c; // first visible time, no color mixing else m_color[z][x] = mixColors(m_color[z][x], c); if(m_color[z][x].a < 0xff) { // near thickness value to thickness of current node m_thickness[z][x] = (m_thickness[z][x] + it->second.t) / 2.0; continue; } // color became opaque, draw it setZoomed(imageX, imageY, m_color[z][x]); m_blockPixelAttributes.attribute(15 - z, xBegin + x).thickness = m_thickness[z][x]; } else { setZoomed(imageX, imageY, c.noAlpha()); } m_readPixels.set(x, z); // do this afterwards so we can record height values // inside transparent nodes (water) too if (!m_readInfo.get(x, z)) { m_blockPixelAttributes.attribute(15 - z, xBegin + x).height = pos.y * 16 + y; m_readInfo.set(x, z); } break; } } } } void TileGenerator::renderMapBlockBottom(const BlockPos &pos) { if (!m_drawAlpha) return; // "missing" pixels can only happen with --drawalpha int xBegin = (pos.x - m_xMin) * 16; int zBegin = (m_zMax - pos.z) * 16; for (int z = 0; z < 16; ++z) { int imageY = zBegin + 15 - z; for (int x = 0; x < 16; ++x) { if (m_readPixels.get(x, z)) continue; int imageX = xBegin + x; // set color since it wasn't done in renderMapBlock() setZoomed(imageX, imageY, m_color[z][x]); m_readPixels.set(x, z); m_blockPixelAttributes.attribute(15 - z, xBegin + x).thickness = m_thickness[z][x]; } } } void TileGenerator::renderShading(int zPos) { int zBegin = (m_zMax - zPos) * 16; for (int z = 0; z < 16; ++z) { int imageY = zBegin + z; if (imageY >= m_mapHeight) continue; for (int x = 0; x < m_mapWidth; ++x) { if( !m_blockPixelAttributes.attribute(z, x).valid_height() || !m_blockPixelAttributes.attribute(z, x - 1).valid_height() || !m_blockPixelAttributes.attribute(z - 1, x).valid_height() ) continue; // calculate shadow to apply int y = m_blockPixelAttributes.attribute(z, x).height; int y1 = m_blockPixelAttributes.attribute(z, x - 1).height; int y2 = m_blockPixelAttributes.attribute(z - 1, x).height; int d = ((y - y1) + (y - y2)) * 12; if (m_drawAlpha) { // less visible shadow with increasing "thickness" double t = m_blockPixelAttributes.attribute(z, x).thickness * 1.2; d *= 1.0 - mymin(t, 255.0) / 255.0; } d = mymin(d, 36); Color c = m_image->getPixel(getImageX(x), getImageY(imageY)); c.r = colorSafeBounds(c.r + d); c.g = colorSafeBounds(c.g + d); c.b = colorSafeBounds(c.b + d); setZoomed(x, imageY, c); } } m_blockPixelAttributes.scroll(); } void TileGenerator::renderScale() { const int scale_d = 40; // see createImage() if (m_scales & SCALE_TOP) { m_image->drawText(24, 0, "X", m_scaleColor); for (int i = (m_xMin / 4) * 4; i <= m_xMax; i += 4) { std::ostringstream buf; buf << i * 16; int xPos = getImageX(i * 16, true); if (xPos >= 0) { m_image->drawText(xPos + 2, 0, buf.str(), m_scaleColor); m_image->drawLine(xPos, 0, xPos, m_yBorder - 1, m_scaleColor); } } } if (m_scales & SCALE_LEFT) { m_image->drawText(2, 24, "Z", m_scaleColor); for (int i = (m_zMax / 4) * 4; i >= m_zMin; i -= 4) { std::ostringstream buf; buf << i * 16; int yPos = getImageY(i * 16 + 1, true); if (yPos >= 0) { m_image->drawText(2, yPos, buf.str(), m_scaleColor); m_image->drawLine(0, yPos, m_xBorder - 1, yPos, m_scaleColor); } } } if (m_scales & SCALE_BOTTOM) { int xPos = m_xBorder + m_mapWidth*m_zoom - 24 - 8, yPos = m_yBorder + m_mapHeight*m_zoom + scale_d - 12; m_image->drawText(xPos, yPos, "X", m_scaleColor); for (int i = (m_xMin / 4) * 4; i <= m_xMax; i += 4) { std::ostringstream buf; buf << i * 16; xPos = getImageX(i * 16, true); yPos = m_yBorder + m_mapHeight*m_zoom; if (xPos >= 0) { m_image->drawText(xPos + 2, yPos, buf.str(), m_scaleColor); m_image->drawLine(xPos, yPos, xPos, yPos + 39, m_scaleColor); } } } if (m_scales & SCALE_RIGHT) { int xPos = m_xBorder + m_mapWidth*m_zoom + scale_d - 2 - 8, yPos = m_yBorder + m_mapHeight*m_zoom - 24 - 12; m_image->drawText(xPos, yPos, "Z", m_scaleColor); for (int i = (m_zMax / 4) * 4; i >= m_zMin; i -= 4) { std::ostringstream buf; buf << i * 16; xPos = m_xBorder + m_mapWidth*m_zoom; yPos = getImageY(i * 16 + 1, true); if (yPos >= 0) { m_image->drawText(xPos + 2, yPos, buf.str(), m_scaleColor); m_image->drawLine(xPos, yPos, xPos + 39, yPos, m_scaleColor); } } } } void TileGenerator::renderOrigin() { if (m_xMin > 0 || m_xMax < 0 || m_zMin > 0 || m_zMax < 0) return; m_image->drawCircle(getImageX(0, true), getImageY(0, true), 12, m_originColor); } void TileGenerator::renderPlayers(const std::string &inputPath) { PlayerAttributes players(inputPath); for (auto &player : players) { if (player.x < m_xMin * 16 || player.x > m_xMax * 16 || player.z < m_zMin * 16 || player.z > m_zMax * 16) continue; if (player.y < m_yMin || player.y > m_yMax) continue; int imageX = getImageX(player.x, true), imageY = getImageY(player.z, true); m_image->drawFilledRect(imageX - 1, imageY, 3, 1, m_playerColor); m_image->drawFilledRect(imageX, imageY - 1, 1, 3, m_playerColor); m_image->drawText(imageX + 2, imageY, player.name, m_playerColor); } } void TileGenerator::writeImage(const std::string &output) { m_image->save(output); delete m_image; m_image = NULL; } void TileGenerator::printUnknown() { if (m_unknownNodes.size() == 0) return; std::cerr << "Unknown nodes:" << std::endl; for (const auto &node : m_unknownNodes) std::cerr << "\t" << node << std::endl; } inline int TileGenerator::getImageX(int val, bool absolute) const { if (absolute) val = (val - m_xMin * 16); return (m_zoom*val) + m_xBorder; } inline int TileGenerator::getImageY(int val, bool absolute) const { if (absolute) val = m_mapHeight - (val - m_zMin * 16); // Z axis is flipped on image return (m_zoom*val) + m_yBorder; } inline void TileGenerator::setZoomed(int x, int y, Color color) { m_image->drawFilledRect(getImageX(x), getImageY(y), m_zoom, m_zoom, color); }