-- Approximations for erf(x) and erfInv(x) from -- https://en.wikipedia.org/wiki/Error_function local statistics = {} local random, floor, ceil = math.random, math.floor, math.ceil local exp, log, sqrt = math.exp, math.log, math.sqrt local ROOT_2 = sqrt(2.0) local A = 8 * (math.pi - 3.0) / (3.0 * math.pi * (4.0 - math.pi)) local B = 4.0 / math.pi local C = 2.0 / (math.pi * A) local D = 1.0 / A local function erf(x) if x == 0 then return 0 end local xSq = x * x local aXSq = A * xSq local v = sqrt(1.0 - exp(-xSq * (B + aXSq) / (1.0 + aXSq))) return (x > 0 and v) or -v end local function erf_inv(x) if x == 0 then return 0 end if x <= -1 or x >= 1 then return nil end local y = log(1 - x * x) local u = C + 0.5 * y local v = sqrt(sqrt(u * u - D * y) - u) return (x > 0 and v) or -v end local function std_normal(u) return ROOT_2 * erf_inv(2.0 * u - 1.0) end local function generate_cdf(lambda_index, lambda) local max = ceil(4 * lambda) local pdf = exp(-lambda) local cdf = pdf local t = { [0] = pdf } for i = 1, max - 1 do pdf = pdf * lambda / i cdf = cdf + pdf t[i] = cdf end return t end local cdf_table = {} for li = 1, 100 do cdf_table[li] = generate_cdf(li, 0.25 * li) end local function poisson(lambda, max) if max < 2 then return (random() < exp(-lambda) and 0) or 1 elseif lambda >= 2 * max then return max end local u = random() local lambda_index = floor(4 * lambda + 0.5) local cdfs = cdf_table[lambda_index] if cdfs then lambda = 0.25 * lambda_index if u < cdfs[0] then return 0 end if max > #cdfs then max = #cdfs + 1 else max = floor(max) end if u >= cdfs[max - 1] then return max end if max > 4 then -- Binary search local s = 0 while s + 1 < max do local m = floor(0.5 * (s + max)) if u < cdfs[m] then max = m else s = m end end else for i = 1, max - 1 do if u < cdfs[i] then return i end end end return max else local x = lambda + sqrt(lambda) * std_normal(u) return (x < 0.5 and 0) or (x >= max - 0.5 and max) or floor(x + 0.5) end end -- Error and Inverse error functions statistics.erf = erf statistics.erf_inv = erf_inv --- Standard normal distribution function (mean 0, standard deviation 1). -- @return - Any real number (actually between -3.0 and 3.0). statistics.std_normal = function() local u = random() if u < 0.001 then return -3.0 elseif u > 0.999 then return 3.0 end return std_normal(u) end --- Standard normal distribution function (mean 0, standard deviation 1). -- @param mu - The distribution mean. -- @param sigma - The distribution standard deviation. -- @return - Any real number (actually between -3*sigma and 3*sigma). statistics.normal = function(mu, sigma) local u = random() if u < 0.001 then return mu - 3.0 * sigma elseif u > 0.999 then return mu + 3.0 * sigma end return mu + sigma * std_normal(u) end --- Poisson distribution function. -- @param lambda - The distribution mean and variance. -- @param max - The distribution maximum. -- @return - An integer between 0 and max (both inclusive). statistics.poisson = function(lambda, max) lambda, max = tonumber(lambda), tonumber(max) if not lambda or not max or lambda <= 0 or max < 1 then return 0 end return poisson(lambda, max) end return statistics