mapgen_rivers/view_map.py

53 lines
1.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import numpy as np
import zlib
import matplotlib.colors as mcol
import matplotlib.pyplot as plt
def view_map(dem, lakes, rivers, scale):
plt.subplot(1,3,1)
plt.pcolormesh(np.arange(dem.shape[0]+1)*scale, np.arange(dem.shape[1]+1)*scale, dem, cmap='viridis')
plt.gca().set_aspect('equal', 'box')
plt.colorbar(orientation='horizontal')
plt.title('Raw elevation')
plt.subplot(1,3,2)
plt.pcolormesh(np.arange(lakes.shape[0]+1)*scale, np.arange(lakes.shape[1]+1)*scale, lakes, cmap='viridis')
plt.gca().set_aspect('equal', 'box')
plt.colorbar(orientation='horizontal')
plt.title('Lake surface elevation')
plt.subplot(1,3,3)
plt.pcolormesh(np.arange(rivers.shape[0]+1)*scale, np.arange(rivers.shape[1]+1)*scale, rivers, cmap='Blues', norm=mcol.LogNorm())
plt.gca().set_aspect('equal', 'box')
plt.colorbar(orientation='horizontal')
plt.title('Rivers flux')
plt.show()
if __name__ == "__main__":
import sys
import os
scale = 1
if len(sys.argv) > 1:
os.chdir(sys.argv[1])
if len(sys.argv) > 2:
scale = int(sys.argv[2])
def load_map(name, dtype, shape):
dtype = np.dtype(dtype)
with open(name, 'rb') as f:
data = f.read()
if len(data) < shape[0]*shape[1]*dtype.itemsize:
data = zlib.decompress(data)
return np.frombuffer(data, dtype=dtype).reshape(shape)
shape = np.loadtxt('size', dtype='u4')
dem = load_map('dem', '>i2', shape)
lakes = load_map('lakes', '>i2', shape)
rivers = load_map('rivers', '>u4', shape)
view_map(dem, lakes, rivers, scale)