Added more comments in terrainlib_lua

This commit is contained in:
Gaël C 2022-01-07 14:48:36 +01:00
parent 68c19c3b94
commit b3d79eaaf8
4 changed files with 135 additions and 69 deletions

View File

@ -1,7 +1,13 @@
-- erosion.lua -- erosion.lua
-- This is the main file of terrainlib_lua. It registers the EvolutionModel object and some of the
local function erode(model, time) local function erode(model, time)
--local tinsert = table.insert -- Apply river erosion on the model
-- Erosion model is based on the simplified version of the stream-power law Ey = K×A^m×S
-- where Ey is the vertical erosion speed, A catchment area of the river, S slope along the river, m and K local constants.
-- It is equivalent to considering a horizontal erosion wave travelling at Ex = K×A^m, and this latter approach allows much greather time steps so it is used here.
-- For each point, instead of moving upstream and see what point the erosion wave would reach, we move downstream and see from which point the erosion wave would reach the given point, then we can set the elevation.
local mmin, mmax = math.min, math.max local mmin, mmax = math.min, math.max
local dem = model.dem local dem = model.dem
local dirs = model.dirs local dirs = model.dirs
@ -22,9 +28,9 @@ local function erode(model, time)
if scalars then if scalars then
for i=1, X*Y do for i=1, X*Y do
local etime = 1 / (K*rivers[i]^m) local etime = 1 / (K*rivers[i]^m) -- Inverse of erosion speed (Ex); time needed for the erosion wave to move through the river section.
erosion_time[i] = etime erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level) lakes[i] = mmax(lakes[i], dem[i], sea_level) -- Use lake/sea surface if higher than ground level, because rivers can not erode below.
end end
else else
for i=1, X*Y do for i=1, X*Y do
@ -39,10 +45,12 @@ local function erode(model, time)
local remaining = time local remaining = time
local new_elev local new_elev
while true do while true do
-- Explore downstream until we find the point 'iw' from which the erosion wave will reach 'i'
local inext = iw local inext = iw
local d = dirs[iw] local d = dirs[iw]
if d == 0 then -- Follow the river downstream (move 'iw')
if d == 0 then -- If no flow direction, we reach the border of the map: set elevation to the latest node's elev and abort.
new_elev = lakes[iw] new_elev = lakes[iw]
break break
elseif d == 1 then elseif d == 1 then
@ -56,13 +64,13 @@ local function erode(model, time)
end end
local etime = erosion_time[iw] local etime = erosion_time[iw]
if remaining <= etime then if remaining <= etime then -- We have found the node from which the erosion wave will take 'time' to arrive to 'i'.
local c = remaining / etime local c = remaining / etime
new_elev = (1-c) * lakes[iw] + c * lakes[inext] new_elev = (1-c) * lakes[iw] + c * lakes[inext] -- Interpolate linearly between the two nodes
break break
end end
remaining = remaining - etime remaining = remaining - etime -- If we still don't reach the target time, decrement time and move to next point.
iw = inext iw = inext
end end
@ -71,10 +79,13 @@ local function erode(model, time)
end end
local function diffuse(model, time) local function diffuse(model, time)
-- Apply diffusion using finite differences methods
-- Adapted for small radiuses
local mmax = math.max local mmax = math.max
local dem = model.dem local dem = model.dem
local X, Y = dem.X, dem.Y local X, Y = dem.X, dem.Y
local d = model.params.d local d = model.params.d
-- 'd' is equal to 4 times the diffusion coefficient
local dmax = d local dmax = d
if type(d) == "table" then if type(d) == "table" then
dmax = -math.huge dmax = -math.huge
@ -84,6 +95,8 @@ local function diffuse(model, time)
end end
local diff = dmax * time local diff = dmax * time
-- diff should never exceed 1 per iteration.
-- If needed, we will divide the process in enough iterations so that 'ddiff' is below 1.
local niter = math.floor(diff) + 1 local niter = math.floor(diff) + 1
local ddiff = diff / niter local ddiff = diff / niter
@ -96,6 +109,7 @@ local function diffuse(model, time)
for x=1, X do for x=1, X do
local iW = (x==1) and 0 or -1 local iW = (x==1) and 0 or -1
local iE = (x==X) and 0 or 1 local iE = (x==X) and 0 or 1
-- Laplacian Δdem × 1/4
temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i] temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i]
i = i + 1 i = i + 1
end end
@ -105,7 +119,6 @@ local function diffuse(model, time)
dem[i] = dem[i] + temp[i]*ddiff dem[i] = dem[i] + temp[i]*ddiff
end end
end end
-- TODO Test this
end end
local modpath = "" local modpath = ""
@ -126,6 +139,7 @@ local function flow(model)
end end
local function uplift(model, time) local function uplift(model, time)
-- Raises the terrain according to uplift rate (model.params.uplift)
local dem = model.dem local dem = model.dem
local X, Y = dem.X, dem.Y local X, Y = dem.X, dem.Y
local uplift_rate = model.params.uplift local uplift_rate = model.params.uplift
@ -142,6 +156,7 @@ local function uplift(model, time)
end end
local function noise(model, time) local function noise(model, time)
-- Adds noise to the terrain according to noise depth (model.params.noise)
local random = math.random local random = math.random
local dem = model.dem local dem = model.dem
local noise_depth = model.params.noise * 2 * time local noise_depth = model.params.noise * 2 * time
@ -151,6 +166,12 @@ local function noise(model, time)
end end
end end
-- Isostasy
-- This is the geological phenomenon that makes the lithosphere "float" over the underlying layers.
-- One of the key implications is that when a very large mass is removed from the ground, the lithosphere reacts by moving upward. This compensation only occurs at large scale (as the lithosphere is not flexible enough for small scale adjustments) so the implementation is using a very large-window Gaussian blur of the elevation array.
-- This implementation is quite simplistic, it does not do a mass balance of the lithosphere as this would introduce too many parameters. Instead, it defines a reference equilibrium elevation, and the ground will react toward this elevation (at the scale of the gaussian window).
-- A change in reference isostasy during the run can also be used to simulate tectonic forcing, like making a new mountain range appear.
local function define_isostasy(model, ref, link) local function define_isostasy(model, ref, link)
ref = ref or model.dem ref = ref or model.dem
if link then if link then
@ -168,18 +189,20 @@ local function define_isostasy(model, ref, link)
return ref2 return ref2
end end
-- Apply isostasy
local function isostasy(model) local function isostasy(model)
local dem = model.dem local dem = model.dem
local X, Y = dem.X, dem.Y local X, Y = dem.X, dem.Y
local temp = {X=X, Y=Y} local temp = {X=X, Y=Y}
local ref = model.isostasy_ref local ref = model.isostasy_ref
for i=1, X*Y do for i=1, X*Y do
temp[i] = ref[i] - dem[i] temp[i] = ref[i] - dem[i] -- Compute the difference between the ground level and the target level
end end
-- Blur the difference map using Gaussian blur
gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4) gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4)
for i=1, X*Y do for i=1, X*Y do
dem[i] = dem[i] + temp[i] dem[i] = dem[i] + temp[i] -- Apply the difference
end end
end end

View File

@ -71,20 +71,6 @@ local function box_blur_2d(map1, size, map2)
return map1 return map1
end end
--[[local function gaussian_blur(map, std, tail)
local exp = math.exp
local kernel_mid = math.ceil(std*tail) + 1
local kernel_size = kernel_mid * 2 - 1
local kernel = {}
local cst1 = 1/(std*(2*math.pi)^0.5)
local cst2 = -1/(2*std^2)
for i=1, kernel_size do
kernel[i] = cst1 * exp((i-kernel_mid)^2 * cst2)
end
]]
local function gaussian_blur_approx(map, sigma, n, map2) local function gaussian_blur_approx(map, sigma, n, map2)
map2 = map2 or {} map2 = map2 or {}
local sizes = get_box_size(sigma, n) local sizes = get_box_size(sigma, n)

View File

@ -9,24 +9,26 @@
-- --
-- Big thanks to them for releasing this paper under a free license ! :) -- Big thanks to them for releasing this paper under a free license ! :)
-- The algorithm here makes use of most of the paper's concepts, including the Planar Boruvka algorithm. -- The algorithm here makes use of most of the paper's concepts, including the Planar Borůvka algorithm.
-- Only flow_local and accumulate_flow are custom algorithms. -- Only flow_local and accumulate_flow are custom algorithms.
local function flow_local_semirandom(plist) local function flow_local_semirandom(plist)
-- Determines how water should flow at 1 node scale.
-- The straightforward approach would be "Water will flow to the lowest of the 4 neighbours", but here water flows to one of the lower neighbours, chosen randomly, but probability depends on height difference.
-- This makes rivers better follow the curvature of the topography at large scale, and be less biased by pure N/E/S/W directions.
-- 'plist': array of downward height differences (0 if upward)
local sum = 0 local sum = 0
for i=1, #plist do for i=1, #plist do
sum = sum + plist[i] sum = sum + plist[i] -- Sum of probabilities
end end
--for _, p in ipairs(plist) do
--sum = sum + p
--end
if sum == 0 then if sum == 0 then
return 0 return 0
end end
local r = math.random() * sum local r = math.random() * sum
for i=1, #plist do for i=1, #plist do
local p = plist[i] local p = plist[i]
--for i, p in ipairs(plist) do
if r < p then if r < p then
return i return i
end end
@ -35,11 +37,14 @@ local function flow_local_semirandom(plist)
return 0 return 0
end end
-- Maybe implement more flow methods in the future?
local flow_methods = { local flow_methods = {
semirandom = flow_local_semirandom, semirandom = flow_local_semirandom,
} }
local function flow_routing(dem, dirs, lakes, method) -- Applies all steps of the flow routing, to calculate flow direction for every node, and lake surface elevation.
-- It's quite a hard piece of code, but we will go step by step and explain what's going on, so stay with me and... let's goooooooo!
local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are optional tables to reuse for memory optimization, they may contain any data.
method = method or 'semirandom' method = method or 'semirandom'
local flow_local = flow_methods[method] or flow_local_semirandom local flow_local = flow_methods[method] or flow_local_semirandom
@ -47,7 +52,6 @@ local function flow_routing(dem, dirs, lakes, method)
lakes = lakes or {} lakes = lakes or {}
-- Localize for performance -- Localize for performance
--local tinsert = table.insert
local tremove = table.remove local tremove = table.remove
local mmax = math.max local mmax = math.max
@ -62,11 +66,15 @@ local function flow_routing(dem, dirs, lakes, method)
dirs2[i] = 0 dirs2[i] = 0
end end
----------------------------------------
-- STEP 1: Find local flow directions --
----------------------------------------
-- Use the local flow function and fill the flow direction tables
local singular = {} local singular = {}
for y=1, Y do for y=1, Y do
for x=1, X do for x=1, X do
local zi = dem[i] local zi = dem[i]
local plist = { local plist = { -- Get the height difference of the 4 neighbours (and 0 if uphill)
y<Y and mmax(zi-dem[i+X], 0) or 0, -- Southward y<Y and mmax(zi-dem[i+X], 0) or 0, -- Southward
x<X and mmax(zi-dem[i+1], 0) or 0, -- Eastward x<X and mmax(zi-dem[i+1], 0) or 0, -- Eastward
y>1 and mmax(zi-dem[i-X], 0) or 0, -- Northward y>1 and mmax(zi-dem[i-X], 0) or 0, -- Northward
@ -74,8 +82,10 @@ local function flow_routing(dem, dirs, lakes, method)
} }
local d = flow_local(plist) local d = flow_local(plist)
-- 'dirs': Direction toward which water flow
-- 'dirs2': Directions from which water comes
dirs[i] = d dirs[i] = d
if d == 0 then if d == 0 then -- If water can't flow from this node, add it to the list of singular nodes that will be resolved later
singular[#singular+1] = i singular[#singular+1] = i
elseif d == 1 then elseif d == 1 then
dirs2[i+X] = dirs2[i+X] + 1 dirs2[i+X] = dirs2[i+X] + 1
@ -90,30 +100,39 @@ local function flow_routing(dem, dirs, lakes, method)
end end
end end
-- Compute basins and links --------------------------------------
-- STEP 2: Compute basins and links --
--------------------------------------
-- Now water can flow until it reaches a singular node (which is in most cases the bottom of a depression)
-- We will calculate the drainage basin of every singular node (all the nodes from which the water will flow in this singular node, directly or indirectly), make an adjacency list of basins, and find the lowest pass between each pair of adjacent basins (they are potential lake outlets)
local nbasins = #singular local nbasins = #singular
local basin_id = {} local basin_id = {}
local links = {} local links = {}
local basin_links local basin_links
-- Function to analyse a link between two nodes
local function add_link(i1, i2, b1, isY) local function add_link(i1, i2, b1, isY)
-- i1, i2: coordinates of two nodes
-- b1: basin that contains i1
-- isY: whether the link is in Y direction
local b2 local b2
if i2 == 0 then -- Note that basin number #0 represents the outside of the map; or if the coordinate is inside the map, means that the basin number is uninitialized.
if i2 == 0 then -- If outside the map
b2 = 0 b2 = 0
else else
b2 = basin_id[i2] b2 = basin_id[i2]
if b2 == 0 then if b2 == 0 then -- If basin of i2 is not already computed, skip
return return
end end
end end
if b2 ~= b1 then if b2 ~= b1 then -- If these two nodes don't belong to the same basin, we have found a link between two adjacent basins
local elev = i2 == 0 and dem[i1] or mmax(dem[i1], dem[i2]) local elev = i2 == 0 and dem[i1] or mmax(dem[i1], dem[i2]) -- Elevation of the highest of the two sides of the link (or only i1 if b2 is map outside)
local l2 = basin_links[b2] local l2 = basin_links[b2]
if not l2 then if not l2 then
l2 = {} l2 = {}
basin_links[b2] = l2 basin_links[b2] = l2
end end
if not l2.elev or l2.elev > elev then if not l2.elev or l2.elev > elev then -- If this link is lower than the lowest registered link between these two basins, register it as the new lowest pass
l2.elev = elev l2.elev = elev
l2.i = mmax(i1,i2) l2.i = mmax(i1,i2)
l2.is_y = isY l2.is_y = isY
@ -126,51 +145,48 @@ local function flow_routing(dem, dirs, lakes, method)
for i=1, X*Y do for i=1, X*Y do
basin_id[i] = 0 basin_id[i] = 0
end end
--for ib, s in ipairs(singular) do
for ib=1, nbasins do for ib=1, nbasins do
--local s = singular[ib] -- Here we will recursively search upstream from the singular node to determine its drainage basin
local queue = {singular[ib]} local queue = {singular[ib]} -- Start with the singular node, then this queue will be filled with water donors neighbours
basin_links = {} basin_links = {}
links[#links+1] = basin_links links[#links+1] = basin_links
--tinsert(links, basin_links)
while #queue > 0 do while #queue > 0 do
local i = tremove(queue) local i = tremove(queue)
basin_id[i] = ib basin_id[i] = ib
local d = dirs2[i] local d = dirs2[i] -- Get the directions water is coming from
if d >= 8 then -- River coming from East -- Iterate through the 4 directions
if d >= 8 then -- River coming from the East
d = d - 8 d = d - 8
queue[#queue+1] = i+1 queue[#queue+1] = i+1
--tinsert(queue, i+X) -- If no river is coming from the East, we might be at the limit of two basins, thus we need to test adjacency.
elseif i%X > 0 then elseif i%X > 0 then
add_link(i, i+1, ib, false) add_link(i, i+1, ib, false)
else else -- If the eastern neighbour is outside the map
add_link(i, 0, ib, false) add_link(i, 0, ib, false)
end end
if d >= 4 then -- River coming from South if d >= 4 then -- River coming from the South
d = d - 4 d = d - 4
queue[#queue+1] = i+X queue[#queue+1] = i+X
--tinsert(queue, i+1)
elseif i <= X*(Y-1) then elseif i <= X*(Y-1) then
add_link(i, i+X, ib, true) add_link(i, i+X, ib, true)
else else
add_link(i, 0, ib, true) add_link(i, 0, ib, true)
end end
if d >= 2 then -- River coming from West if d >= 2 then -- River coming from the West
d = d - 2 d = d - 2
queue[#queue+1] = i-1 queue[#queue+1] = i-1
--tinsert(queue, i-X)
elseif i%X ~= 1 then elseif i%X ~= 1 then
add_link(i, i-1, ib, false) add_link(i, i-1, ib, false)
else else
add_link(i, 0, ib, false) add_link(i, 0, ib, false)
end end
if d >= 1 then -- River coming from North if d >= 1 then -- River coming from the North
queue[#queue+1] = i-X queue[#queue+1] = i-X
--tinsert(queue, i-1)
elseif i > X then elseif i > X then
add_link(i, i-X, ib, true) add_link(i, i-X, ib, true)
else else
@ -186,7 +202,7 @@ local function flow_routing(dem, dirs, lakes, method)
nlinks[i] = 0 nlinks[i] = 0
end end
--for ib1, blinks in ipairs(links) do -- Iterate through pairs of adjacent basins, and make the links reciprocal
for ib1=1, #links do for ib1=1, #links do
for ib2, link in pairs(links[ib1]) do for ib2, link in pairs(links[ib1]) do
if ib2 < ib1 then if ib2 < ib1 then
@ -197,6 +213,15 @@ local function flow_routing(dem, dirs, lakes, method)
end end
end end
-----------------------------------------------------
-- STEP 3: Compute minimal spanning tree of basins --
-----------------------------------------------------
-- We've got an adjacency list of basins with the elevation of their links.
-- We will build a minimal spanning tree of the basins (where costs are the elevation of the links). As demonstrated by Cordonnier et al., this finds the outlets of the basins, where water would naturally flow. This does not tell in which direction water is flowing, however.
-- We will use a version of Borůvka's algorithm, with Mareš' optimizations to approach linear complexity (see paper).
-- The concept of Borůvka's algorithm is to take elements and merge them with their lowest neighbour, until all elements are merged.
-- Mareš' optimizations mainly consist in skipping elements that have over 8 links, until extra links are removed when other elements are merged.
-- Note that for this step we are only working on basins, not grid nodes.
local lowlevel = {} local lowlevel = {}
for i, n in pairs(nlinks) do for i, n in pairs(nlinks) do
if n <= 8 then if n <= 8 then
@ -206,6 +231,8 @@ local function flow_routing(dem, dirs, lakes, method)
local basin_graph = {} local basin_graph = {}
for n=1, nbasins do for n=1, nbasins do
-- Iterate in lowlevel but its contents may change during the loop
-- 'next' called with only one argument always returns an element if table is not empty
local b1, lnk1 = next(lowlevel) local b1, lnk1 = next(lowlevel)
lowlevel[b1] = nil lowlevel[b1] = nil
@ -213,6 +240,7 @@ local function flow_routing(dem, dirs, lakes, method)
local lowest = math.huge local lowest = math.huge
local lnk1 = links[b1] local lnk1 = links[b1]
local i = 0 local i = 0
-- Look for lowest link
for bn, bdata in pairs(lnk1) do for bn, bdata in pairs(lnk1) do
i = i + 1 i = i + 1
if bdata.elev < lowest then if bdata.elev < lowest then
@ -221,7 +249,7 @@ local function flow_routing(dem, dirs, lakes, method)
end end
end end
-- Add link to the graph -- Add link to the graph, in both directions
local bound = lnk1[b2] local bound = lnk1[b2]
local bb1, bb2 = bound[1], bound[2] local bb1, bb2 = bound[1], bound[2]
if not basin_graph[bb1] then if not basin_graph[bb1] then
@ -239,6 +267,7 @@ local function flow_routing(dem, dirs, lakes, method)
lnk1[b2] = nil lnk1[b2] = nil
lnk2[b1] = nil lnk2[b1] = nil
nlinks[b2] = nlinks[b2] - 1 nlinks[b2] = nlinks[b2] - 1
-- When the number of links is changing, we need to check whether the basin can be added to / removed from 'lowlevel'
if nlinks[b2] == 8 then if nlinks[b2] == 8 then
lowlevel[b2] = lnk2 lowlevel[b2] = lnk2
end end
@ -247,25 +276,32 @@ local function flow_routing(dem, dirs, lakes, method)
local lnkn = links[bn] local lnkn = links[bn]
lnkn[b1] = nil lnkn[b1] = nil
if lnkn[b2] then if lnkn[b2] then -- If bassin bn is also linked to b2
nlinks[bn] = nlinks[bn] - 1 nlinks[bn] = nlinks[bn] - 1 -- Then bassin bn is losing a link because it keeps only one link toward b1/b2 after the merge
if nlinks[bn] == 8 then if nlinks[bn] == 8 then
lowlevel[bn] = lnkn lowlevel[bn] = lnkn
end end
else else -- If bn was linked to b1 but not to b2
nlinks[b2] = nlinks[b2] + 1 nlinks[b2] = nlinks[b2] + 1 -- Then b2 is gaining a link to bn because of the merge
if nlinks[b2] == 9 then if nlinks[b2] == 9 then
lowlevel[b2] = nil lowlevel[b2] = nil
end end
end end
if not lnkn[b2] or lnkn[b2].elev > bdata.elev then if not lnkn[b2] or lnkn[b2].elev > bdata.elev then -- If the link b1-bn will become the new lowest link between b2 and bn, redirect the link to b2
lnkn[b2] = bdata lnkn[b2] = bdata
lnk2[bn] = bdata lnk2[bn] = bdata
end end
end end
end end
--------------------------------------------------------------
-- STEP 4: Orient basin graph, and grid nodes inside basins --
--------------------------------------------------------------
-- We will finally solve those freaking singular nodes.
-- To orient the basin graph, we will consider that the ultimate basin water should flow into is the map outside (basin #0). We will start from it and recursively walk upstream to the neighbouring basins, using only links that are in the minimal spanning tree. This gives the flow direction of the links, and thus, the outlet of every basin.
-- This will also give lake elevation, which is the highest link encountered between map outside and the given basin on the spanning tree.
-- And within each basin, we need to modify flow directions to connect the singular node to the outlet.
local queue = {[0] = -math.huge} local queue = {[0] = -math.huge}
local basin_lake = {} local basin_lake = {}
for n=1, nbasins do for n=1, nbasins do
@ -273,15 +309,17 @@ local function flow_routing(dem, dirs, lakes, method)
end end
local reverse = {3, 4, 1, 2, [0]=0} local reverse = {3, 4, 1, 2, [0]=0}
for n=1, nbasins do for n=1, nbasins do
local b1, elev1 = next(queue) local b1, elev1 = next(queue) -- Pop from queue
queue[b1] = nil queue[b1] = nil
basin_lake[b1] = elev1 basin_lake[b1] = elev1
-- Iterate through b1's neighbours (according to the spanning tree)
for b2, bound in pairs(basin_graph[b1]) do for b2, bound in pairs(basin_graph[b1]) do
-- Make b2 flow into b1 -- Make b2 flow into b1
local i = bound.i local i = bound.i -- Get the coordinate of the link (which is the basin's outlet)
local dir = bound.is_y and 3 or 4 local dir = bound.is_y and 3 or 4 -- And get the direction (S/E/N/W)
if basin_id[i] ~= b2 then if basin_id[i] ~= b2 then
dir = dir - 2 dir = dir - 2
-- Coordinate 'i' refers to the side of the link with the highest X/Y position. In case it is in the wrong basin, take the other side by decrementing by one row/column.
if bound.is_y then if bound.is_y then
i = i - X i = i - X
else else
@ -291,8 +329,12 @@ local function flow_routing(dem, dirs, lakes, method)
dir = 0 dir = 0
end end
-- Use the flow directions computed in STEP 2 to find the route from the outlet position to the singular node, and reverse this route to make the singular node flow into the outlet
-- This can make the river flow uphill, which may seem unnatural, but it can only happen below a lake (because outlet elevation defines lake surface elevation)
repeat repeat
-- Assign i's direction to 'dir', and get i's former direction
dir, dirs[i] = dirs[i], dir dir, dirs[i] = dirs[i], dir
-- Move i by following its former flow direction (downstream)
if dir == 1 then if dir == 1 then
i = i + X i = i + X
elseif dir == 2 then elseif dir == 2 then
@ -302,26 +344,36 @@ local function flow_routing(dem, dirs, lakes, method)
elseif dir == 4 then elseif dir == 4 then
i = i - 1 i = i - 1
end end
-- Reverse the flow direction for the next node, which will flow into i
dir = reverse[dir] dir = reverse[dir]
until dir == 0 until dir == 0 -- Stop when reaching the singular node
-- Add b2 into the queue
-- Add basin b2 into the queue, and keep the highest link elevation, that will define the elevation of the lake in b2
queue[b2] = mmax(elev1, bound.elev) queue[b2] = mmax(elev1, bound.elev)
-- Remove b1 from b2's neighbours to avoid coming back to b1
basin_graph[b2][b1] = nil basin_graph[b2][b1] = nil
end end
basin_graph[b1] = nil basin_graph[b1] = nil
end end
-- Every node will be assigned the lake elevation of the basin it belongs to.
-- If lake elevation is lower than ground elevation, it simply means that there is no lake here.
for i=1, X*Y do for i=1, X*Y do
lakes[i] = basin_lake[basin_id[i]] lakes[i] = basin_lake[basin_id[i]]
end end
-- That's it!
return dirs, lakes return dirs, lakes
end end
local function accumulate(dirs, waterq) local function accumulate(dirs, waterq)
-- Calculates the river flow by determining the surface of the catchment area for every node
-- This means: how many nodes will give their water to that given node, directly or indirectly?
-- This is obtained by following rivers downstream and summing up the flow of every tributary, starting with a value of 1 at the sources.
-- This will give non-zero values for every node but only large values will be considered to be rivers.
waterq = waterq or {} waterq = waterq or {}
local X, Y = dirs.X, dirs.Y local X, Y = dirs.X, dirs.Y
--local tinsert = table.insert
local ndonors = {} local ndonors = {}
local waterq = {X=X, Y=Y} local waterq = {X=X, Y=Y}
@ -330,7 +382,7 @@ local function accumulate(dirs, waterq)
waterq[i] = 1 waterq[i] = 1
end end
--for i1, dir in ipairs(dirs) do -- Calculate the number of direct donors
for i1=1, X*Y do for i1=1, X*Y do
local i2 local i2
local dir = dirs[i1] local dir = dirs[i1]
@ -349,10 +401,12 @@ local function accumulate(dirs, waterq)
end end
for i1=1, X*Y do for i1=1, X*Y do
-- Find sources (nodes that have no donor)
if ndonors[i1] == 0 then if ndonors[i1] == 0 then
local i2 = i1 local i2 = i1
local dir = dirs[i2] local dir = dirs[i2]
local w = waterq[i2] local w = waterq[i2]
-- Follow the water flow downstream: move 'i2' to the next node according to its flow direction
while dir > 0 do while dir > 0 do
if dir == 1 then if dir == 1 then
i2 = i2 + X i2 = i2 + X
@ -363,9 +417,12 @@ local function accumulate(dirs, waterq)
elseif dir == 4 then elseif dir == 4 then
i2 = i2 - 1 i2 = i2 - 1
end end
-- Increment the water quantity of i2
w = w + waterq[i2] w = w + waterq[i2]
waterq[i2] = w waterq[i2] = w
-- Stop on an unresolved confluence (node with >1 donors) and decrease the number of remaining donors
-- When the ndonors of a confluence has decreased to 1, it means that its water quantity has already been incremented by its tributaries, so it can be resolved like a standard river section. However, do not decrease ndonors to zero to avoid considering it as a source.
if ndonors[i2] > 1 then if ndonors[i2] > 1 then
ndonors[i2] = ndonors[i2] - 1 ndonors[i2] = ndonors[i2] - 1
break break

View File

@ -1,4 +1,4 @@
-- bounds.lua -- twist.lua
local function get_bounds(dirs, rivers) local function get_bounds(dirs, rivers)
local X, Y = dirs.X, dirs.Y local X, Y = dirs.X, dirs.Y