Completely change flow routing algorithm,

use a local flow calculation, determine depressions, and link them using a minimum spanning tree (Boruvka's algorithm).
This is based on a paper by Cordonnier et al, 2019.
This commit is contained in:
Gael-de-Sailly 2020-12-04 01:03:03 +01:00
parent 40098d6be3
commit ecd2c7d3f9

View File

@ -1,115 +1,247 @@
import numpy as np import numpy as np
import heapq import numpy.random as npr
import sys from collections import defaultdict
# Conventions: def flow_local(plist):
# 1 = South (+Y)
# 2 = East (+X)
# 3 = North (-Y)
# 4 = West (-X)
sys.setrecursionlimit(65536)
neighbours_dirs = np.array([
[0,1,0],
[2,0,4],
[0,3,0],
], dtype=int)
neighbours_pattern = neighbours_dirs > 0
def flow_dirs_lakes(dem, random=0):
""" """
Calculates flow direction in D4 (4 choices) for every pixel of the DEM Determines a flow direction based on denivellation for every neighbouring node.
Also returns an array of lake elevation Denivellation must be positive for downward and zero for flat or upward:
dz = max(zref-z, 0)
""" """
psum = sum(plist)
(Y, X) = dem.shape if psum == 0:
return 0
dem_margin = np.zeros((Y+2, X+2)) # We need a margin of one pixel at every edge, to prevent crashes when scanning the neighbour pixels on the borders r = npr.random() * psum
dem_margin[1:-1,1:-1] = dem for i, p in enumerate(plist):
if random > 0: if r < p:
dem_margin += np.random.random(dem_margin.shape) * random return i+1
r -= p
# Initialize: list map borders
borders = []
for x in range(1,X+1):
dem_north = dem_margin[1,x]
borders.append((dem_north, dem_north, 1, x))
dem_south = dem_margin[Y,x]
borders.append((dem_south, dem_south, Y, x))
for y in range(2,Y):
dem_west = dem_margin[y,1]
borders.append((dem_west, dem_west, y, 1))
dem_east = dem_margin[y,X]
borders.append((dem_east, dem_east, y, X))
# Make a binary heap
heapq.heapify(borders)
dirs = np.zeros((Y+2, X+2), dtype=int)
dirs[-2:,:] = 1 # Border pixels flow outside the map
dirs[:,-2:] = 2
dirs[ :2,:] = 3
dirs[:, :2] = 4
lakes = np.zeros((Y, X))
def add_point(y, x, altmax):
alt = dem_margin[y, x]
heapq.heappush(borders, (alt, altmax, y, x))
while len(borders) > 0:
(alt, altmax, y, x) = heapq.heappop(borders) # Take the lowest pixel in the queue
neighbours = dirs[y-1:y+2, x-1:x+2]
empty_neighbours = (neighbours == 0) * neighbours_pattern # Find the neighbours whose flow direction is not yet defined
neighbours += empty_neighbours * neighbours_dirs # They flow into the pixel being studied
lake = max(alt, altmax) # Set lake elevation to the maximal height of the downstream section.
lakes[y-1,x-1] = lake
coords = np.transpose(empty_neighbours.nonzero())
for (dy,dx) in coords-1: # Add these neighbours into the queue
add_point(y+dy, x+dx, lake)
return dirs[1:-1,1:-1], lakes
def accumulate(dirs, dem=None):
"""
Calculates the quantity of water that accumulates at every pixel,
following flow directions.
"""
(Y, X) = dirs.shape
dirs_margin = np.zeros((Y+2,X+2))-1
dirs_margin[1:-1,1:-1] = dirs
quantity = np.zeros((Y, X), dtype=int)
def calculate_quantity(y, x):
if quantity[y,x] > 0:
return quantity[y,x]
q = 1 # Consider that every pixel contains a water quantity of 1 by default.
neighbours = dirs_margin[y:y+3, x:x+3]
donors = neighbours == neighbours_dirs # Identify neighbours that give their water to the pixel being studied
coords = np.transpose(donors.nonzero())
for (dy,dx) in coords-1:
q += calculate_quantity(y+dy, x+dx) # Add water quantity of the donors pixels (this triggers calculation for these pixels, recursively)
quantity[y, x] = q
return q
for x in range(X):
for y in range(Y):
calculate_quantity(y, x)
return quantity
def flow(dem): def flow(dem):
"""
Calculates flow directions and water quantity
"""
dirs, lakes = flow_dirs_lakes(dem) # Flow locally
return dirs, lakes, accumulate(dirs, dem) dirs1 = np.zeros(dem.shape, dtype=int)
dirs2 = np.zeros(dem.shape, dtype=int)
(X, Y) = dem.shape
Xmax, Ymax = X-1, Y-1
singular = []
for x in range(X):
z0 = z1 = z2 = dem[x,0]
for y in range(Y):
z0 = z1
z1 = z2
if y < Ymax:
z2 = dem[x, y+1]
plist = [
max(z1-dem[x+1,y],0) if x<Xmax else 0, # 1: x -> x+1
max(z1-z2,0), # 2: y -> y+1
max(z1-dem[x-1,y],0) if x>0 else 0, # 3: x -> x-1
max(z1-z0,0), # 4: y -> y-1
]
pdir = flow_local(plist)
dirs2[x,y] = pdir
if pdir == 0:
singular.append((x,y))
elif pdir == 1:
dirs1[x+1,y] += 1
elif pdir == 2:
dirs1[x,y+1] += 2
elif pdir == 3:
dirs1[x-1,y] += 4
elif pdir == 4:
dirs1[x,y-1] += 8
# Compute basins
basin_id = np.zeros(dem.shape, dtype=int)
stack = []
for i, s in enumerate(singular):
queue = [s]
while queue:
x, y = queue.pop()
basin_id[x,y] = i
d = int(dirs1[x,y])
if d & 1:
queue.append((x-1,y))
if d & 2:
queue.append((x,y-1))
if d & 4:
queue.append((x+1,y))
if d & 8:
queue.append((x,y+1))
del dirs1
# Link basins
nsing = len(singular)
links = {}
def add_link(b0, b1, elev, bound):
b = (min(b0,b1),max(b0,b1))
if b not in links or links[b][0] > elev:
links[b] = (elev, bound)
for x in range(X):
b0 = basin_id[x,0]
add_link(-1, b0, dem[x,0], (True, x, 0))
for y in range(1,Y):
b1 = basin_id[x,y]
if b0 != b1:
add_link(b0, b1, max(dem[x,y-1],dem[x,y]), (True, x, y))
b0 = b1
add_link(-1, b1, dem[x,Ymax], (True, x, Y))
for y in range(Y):
b0 = basin_id[0,y]
add_link(-1, b0, dem[0,y], (False, 0, y))
for x in range(1,X):
b1 = basin_id[x,y]
if b0 != b1:
add_link(b0, b1, max(dem[x-1,y],dem[x,y]), (False, x, y))
b0 = b1
add_link(-1, b1, dem[Xmax,y], (False, X, y))
# Computing basin tree
graph = planar_boruvka(links)
basin_links = defaultdict(dict)
for elev, b1, b2, bound in graph:
basin_links[b1][b2] = basin_links[b2][b1] = (elev, bound)
basins = np.zeros(nsing+1)
stack = [(-1, float('-inf'))]
# Applying basin flowing
dir_reverse = (0, 3, 4, 1, 2)
while stack:
b1, elev1 = stack.pop()
basins[b1] = elev1
for b2, (elev2, bound) in basin_links[b1].items():
stack.append((b2, max(elev1, elev2)))
# Reverse flow direction in b2 (TODO)
isY, x, y = bound
backward = True # Whether water will escape the basin in +X/+Y direction
if not (x < X and y < Y and basin_id[x,y] == b2):
if isY:
y -= 1
else:
x -= 1
backward = False
d = 2*backward + isY + 1
while d > 0:
d, dirs2[x,y] = dirs2[x,y], d
if d == 1:
x += 1
elif d == 2:
y += 1
elif d == 3:
x -= 1
elif d == 4:
y -= 1
d = dir_reverse[d]
del basin_links[b2][b1]
del basin_links[b1]
# Calculating water quantity
dirs2[-1,:][dirs2[-1,:]==1] = 0
dirs2[:,-1][dirs2[:,-1]==2] = 0
dirs2[0,:][dirs2[0,:]==3] = 0
dirs2[:,0][dirs2[:,0]==4] = 0
waterq = accumulate_flow(dirs2)
return dirs2, np.maximum(basins[basin_id], dem), waterq
def accumulate_flow(dirs):
ndonors = np.zeros(dirs.shape, dtype=int)
ndonors[1:,:] += dirs[:-1,:] == 1
ndonors[:,1:] += dirs[:,:-1] == 2
ndonors[:-1,:] += dirs[1:,:] == 3
ndonors[:,:-1] += dirs[:,1:] == 4
waterq = np.ones(dirs.shape, dtype=int)
(X, Y) = dirs.shape
rangeX = range(X)
rangeY = range(Y)
for x in rangeX:
for y in rangeY:
if ndonors[x,y] > 0:
continue
xw, yw = x, y
w = waterq[xw, yw]
while 1:
d = dirs[xw, yw]
if d <= 0:
break
elif d == 1:
xw += 1
elif d == 2:
yw += 1
elif d == 3:
xw -= 1
elif d == 4:
yw -= 1
w += waterq[xw, yw]
waterq[xw, yw] = w
if ndonors[xw, yw] > 1:
ndonors[xw, yw] -= 1
break
return waterq
def planar_boruvka(links):
# Compute basin tree
basin_list = defaultdict(dict)
for (b1, b2), (elev, bound) in links.items():
basin_list[b1][b2] = basin_list[b2][b1] = (elev, b1, b2, bound)
threshold = 8
lowlevel = {}
for k, v in basin_list.items():
if len(v) <= threshold:
lowlevel[k] = v
basin_graph = []
n = len(basin_list)
while n > 1:
(b1, lnk1) = lowlevel.popitem()
b2 = min(lnk1, key=lnk1.get)
lnk2 = basin_list[b2]
# Add link to the graph
basin_graph.append(lnk1[b2])
# Union : merge basin 1 into basin 2
# First, delete the direct link
del lnk1[b2]
del lnk2[b1]
# Look for basin 1's neighbours, and add them to basin 2 if they have a lower pass
for k, v in lnk1.items():
bk = basin_list[k]
if k in lnk2 and lnk2[k] < v:
del bk[b1]
else:
lnk2[k] = v
bk[b2] = bk.pop(b1)
if k not in lowlevel and len(bk) <= threshold:
lowlevel[k] = bk
if b2 in lowlevel:
if len(lnk2) > threshold:
del lowlevel[b2]
elif len(lnk2) <= threshold:
lowlevel[b2] = lnk2
del lnk1
n -= 1
return basin_graph