6 Commits

Author SHA1 Message Date
462942cc22 Use iterative finite differences for diffusion, instead of gaussian blur
Allows variable diffusion coefficients
2020-12-27 13:46:25 +01:00
1b96f52e47 Decrease variations of parameter m 2020-12-27 13:45:24 +01:00
3ccb6932ad Implement simple tectonics.
Uplift and subsidence are determined with a noise, at every iteration.
There is no distinctive pattern like tectonic plates, just vertical movements
disturbing rivers from their equilibrium state, and thus creating more diversity.
More lakes and waterfalls especially.
2020-12-24 15:35:27 +01:00
32f3cd9925 Fixed 3D noise map, and removed catchment_reference
Now K and m are determined independently.
Alsoo removed debug plotting.
2020-12-24 15:33:03 +01:00
ae46ada648 Use a class for noise map generation, and add a function for 3D slice of a 2D noise. 2020-12-24 15:33:03 +01:00
4b1d11dd73 Implement variable K and m erosion parameters
For now noise parameters are hardcoded.
2020-12-24 15:30:35 +01:00
2 changed files with 106 additions and 26 deletions

View File

@ -1,30 +1,54 @@
#!/usr/bin/env python3
import numpy as np
from noise import snoise2
from noise import snoise2, snoise3
import os
import sys
import terrainlib
def noisemap(X, Y, scale=0.01, vscale=1.0, offset=0.0, log=False, **params):
class noisemap:
def __init__(self, X, Y, scale=0.01, vscale=1.0, tscale=1.0, offset=0.0, log=None, xbase=None, ybase=None, **params):
# Determine noise offset randomly
if xbase is None:
xbase = np.random.randint(8192)-4096
if ybase is None:
ybase = np.random.randint(8192)-4096
self.xbase = xbase
self.ybase = ybase
self.X = X
self.Y = Y
self.scale = scale
if log:
vscale /= offset
self.vscale = vscale
self.tscale = tscale
self.offset = offset
self.log = log
self.params = params
# Generate the noise
n = np.zeros((X, Y))
for x in range(X):
for y in range(Y):
n[x,y] = snoise2(x/scale + xbase, y/scale + ybase, **params)
def get2d(self):
n = np.zeros((self.X, self.Y))
for x in range(self.X):
for y in range(self.Y):
n[x,y] = snoise2(x/self.scale + self.xbase, y/self.scale + self.ybase, **self.params)
if log:
return np.exp(n*vscale) * offset
if self.log:
return np.exp(n*self.vscale) * self.offset
else:
return n*vscale + offset
return n*self.vscale + self.offset
def get3d(self, t=0):
t /= self.tscale
n = np.zeros((self.X, self.Y))
for x in range(self.X):
for y in range(self.Y):
n[x,y] = snoise3(x/self.scale + self.xbase, y/self.scale + self.ybase, t, **self.params)
if self.log:
return np.exp(n*self.vscale) * self.offset
else:
return n*self.vscale + self.offset
### PARSE COMMAND-LINE ARGUMENTS
argc = len(sys.argv)
@ -87,6 +111,7 @@ sea_level = float(get_setting('sea_level', 0.0))
sea_level_variations = float(get_setting('sea_level_variations', 0.0))
sea_level_variations_time = float(get_setting('sea_level_variations_time', 1.0))
flex_radius = float(get_setting('flex_radius', 20.0))
tectonics_time = float(get_setting('tectonics_time', 0.0))
flow_method = get_setting('flow_method', 'semirandom')
time = float(get_setting('time', 10.0))
@ -111,17 +136,43 @@ params_sealevel = {
"lacunarity" : 2,
}
params_K = {
"offset" : K,
"vscale" : K,
"scale" : 400,
"octaves" : 1,
"persistence" : 0.5,
"lacunarity" : 2,
"log" : True,
}
params_m = {
"offset" : m,
"vscale" : m*0.2,
"scale" : 400,
"octaves" : 1,
"persistence" : 0.5,
"lacunarity" : 2,
"log" : False,
}
if sea_level_variations != 0.0:
sea_ybase = np.random.randint(8192)-4096
sea_level_ref = snoise2(time * (1-1/niter) / sea_level_variations, sea_ybase, **params_sealevel) * sea_level_variations
params['offset'] -= (sea_level_ref + sea_level)
n = noisemap(mapsize+1, mapsize+1, **params)
if tectonics_time == 0.0:
n = noisemap(mapsize+1, mapsize+1, **params).get2d()
else:
terrain_noisemap = noisemap(mapsize+1, mapsize+1, tscale=tectonics_time, **params)
n = terrain_noisemap.get3d()
m_map = noisemap(mapsize+1, mapsize+1, **params_m).get2d()
K_map = noisemap(mapsize+1, mapsize+1, **params_K).get2d()
### COMPUTE LANDSCAPE EVOLUTION
# Initialize landscape evolution model
print('Initializing model')
model = terrainlib.EvolutionModel(n, K=K, m=m, d=d, sea_level=sea_level, flex_radius=flex_radius, flow_method=flow_method)
model = terrainlib.EvolutionModel(n, K=K_map, m=m_map, d=K_map, sea_level=sea_level, flex_radius=flex_radius, flow_method=flow_method)
terrainlib.update(model.dem, model.lakes, t=5, sea_level=model.sea_level, title='Initializing...')
dt = time/niter
@ -141,6 +192,9 @@ for i in range(niter):
terrainlib.update(model.dem, model.lakes, sea_level=model.sea_level, title=disp_niter)
print('Advection')
model.advection(dt)
if tectonics_time != 0.0:
print('Isostasy reference redefinition')
model.define_isostasy(terrain_noisemap.get3d((i+1)*dt))
print('Isostatic equilibration')
model.adjust_isostasy()

View File

@ -1,5 +1,6 @@
import numpy as np
import scipy.ndimage as im
import scipy.signal as si
from .rivermapper import flow
def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0):
@ -47,11 +48,31 @@ def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0):
return dem_new
def diffusion(dem, time, d=1):
radius = d * time**.5
if radius == 0:
second_derivative_matrix = np.array([
[0., 0.25, 0.],
[0.25,-1., 0.25],
[0., 0.25, 0.],
])
diff_max = 1.0
def diffusion(dem, time, d=1.0):
if isinstance(d, np.ndarray):
dmax = d.max()
else:
dmax = d
diff = time * dmax
print(diff)
niter = int(diff//diff_max) + 1
ddiff = d * (time / niter)
#print('{:d} iterations'.format(niter))
for i in range(niter):
dem[1:-1,1:-1] += si.convolve2d(dem, second_derivative_matrix, mode='valid') * ddiff
#print('iteration {:d}'.format(i+1))
return dem
return im.gaussian_filter(dem, radius, mode='reflect') # Diffusive erosion is a simple Gaussian blur
#return im.gaussian_filter(dem, radius, mode='reflect') # Diffusive erosion is a simple Gaussian blur
class EvolutionModel:
def __init__(self, dem, K=1, m=0.5, d=1, sea_level=0, flow=False, flex_radius=100, flow_method='semirandom'):
@ -59,6 +80,9 @@ class EvolutionModel:
#self.bedrock = dem
self.K = K
self.m = m
if isinstance(d, np.ndarray):
self.d = d[1:-1,1:-1]
else:
self.d = d
self.sea_level = sea_level
self.flex_radius = flex_radius
@ -86,8 +110,10 @@ class EvolutionModel:
self.dem = diffusion(self.dem, time, d=self.d)
self.flow_uptodate = False
def define_isostasy(self):
self.ref_isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Define a blurred version of the DEM that will be considered as the reference isostatic elevation.
def define_isostasy(self, dem=None):
if dem is None:
dem = self.dem
self.ref_isostasy = im.gaussian_filter(dem, self.flex_radius, mode='reflect') # Define a blurred version of the DEM that will be considered as the reference isostatic elevation.
def adjust_isostasy(self, rate=1):
isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Calculate blurred DEM