6 Commits

Author SHA1 Message Date
462942cc22 Use iterative finite differences for diffusion, instead of gaussian blur
Allows variable diffusion coefficients
2020-12-27 13:46:25 +01:00
1b96f52e47 Decrease variations of parameter m 2020-12-27 13:45:24 +01:00
3ccb6932ad Implement simple tectonics.
Uplift and subsidence are determined with a noise, at every iteration.
There is no distinctive pattern like tectonic plates, just vertical movements
disturbing rivers from their equilibrium state, and thus creating more diversity.
More lakes and waterfalls especially.
2020-12-24 15:35:27 +01:00
32f3cd9925 Fixed 3D noise map, and removed catchment_reference
Now K and m are determined independently.
Alsoo removed debug plotting.
2020-12-24 15:33:03 +01:00
ae46ada648 Use a class for noise map generation, and add a function for 3D slice of a 2D noise. 2020-12-24 15:33:03 +01:00
4b1d11dd73 Implement variable K and m erosion parameters
For now noise parameters are hardcoded.
2020-12-24 15:30:35 +01:00
35 changed files with 1045 additions and 1404 deletions

104
README.md
View File

@ -1,34 +1,114 @@
# Map Generator with Rivers # Map Generator with Rivers
`mapgen_rivers v1.0` by Gaël de Sailly. `mapgen_rivers v0.0` by Gaël de Sailly.
Semi-procedural map generator for Minetest 5.x. It aims to create realistic and nice-looking landscapes for the game, focused on river networks. It is based on algorithms modelling water flow and river erosion at a broad scale, similar to some used by researchers in Earth Sciences. It is taking some inspiration from [Fastscape](https://github.com/fastscape-lem/fastscape). Procedural map generator for Minetest 5.x. It aims to create realistic and nice-looking landscapes for the game, focused on river networks. It is based on algorithms modelling water flow and river erosion at a broad scale, similar to some used by researchers in Earth Sciences. It is taking some inspiration from [Fastscape](https://github.com/fastscape-lem/fastscape).
Its main particularity compared to conventional Minetest mapgens is that rivers that flow strictly downhill, and combine together to form wider rivers, until they reach the sea. Another notable feature is the possibility of large lakes above sea level. Its main particularity compared to conventional Minetest mapgens is that rivers that flow strictly downhill, and combine together to form wider rivers, until they reach the sea. Another notable feature is the possibility of large lakes above sea level.
![Screenshot](https://user-images.githubusercontent.com/6905002/98825953-6289d980-2435-11eb-9e0b-704a95663ce0.png) ![Screenshot](https://user-images.githubusercontent.com/6905002/98825953-6289d980-2435-11eb-9e0b-704a95663ce0.png)
It used to be composed of a Python script doing pre-generation, and a Lua mod reading the pre-generation output and generating the map. The code has been rewritten in full Lua for version 1.0 (July 2021), and is now usable out-of-the-box as any other Minetest mod. **Important to know**: Unlike most other Minetest mods, it does not contain standalone Lua code, but does part of its processing with a separate Python program (included).
- The Python part does pre-processing: it creates large-scale terrain data and applies landscape evolution algorithms, then outputs a grid of data in the mod's or world's folder. The grid is typically an array of 1000x1000 points of data, each of them representing a cell (by default 12x12 nodes). This pre-processing is long and should be run in advance.
- The Lua part does actual map generation on Minetest. It reads grid data, upscales it (by a factor 12 by default), and adds small-scale features.
# Requirements # Requirements
Mod dependencies: `default` required, and [`biomegen`](https://github.com/Gael-de-Sailly/biomegen) optional (provides biome system). Mod dependencies: `default` required, and [`biomegen`](https://github.com/Gael-de-Sailly/biomegen) optional.
Map pre-generation requires Python 3 with the following libraries installed:
- `numpy`, widely used library for numerical calculations
- `scipy`, a library for advanced data treatments, that is used here for Gaussian filtering
- `noise`, implementing Perlin/Simplex noises
Also, the following are optional (for map preview)
- `matplotlib`, a famous library for graphical plotting
- `colorcet` if you absolutely need better colormaps for preview :-)
They are all commonly found on `pip` or `conda` Python distributions.
# Installation # Installation
This mod should be placed in the `mods/` directory of Minetest like any other mod. This mod should be placed in the `mods/` directory of Minetest like any other mod.
# Usage # Usage
It is recommended to use it **only in new worlds, with `singlenode` mapgen**. On first start, it runs pre-generation to produce a grid, from which the map will be generated. This usually takes a few seconds, but depending on custom settings this can grow considerably longer. By default, the mod contains a demo 400x400 grid (so you can start the game directly), but it is recommended to run the pre-processing script to generate a new grid before world creation, if you can.
By default, it only generates a 15k x 15k map, centered around the origin. To obtain a bigger map, you can increase grid size and/or block size in settings, but this can be more ressource-intensive (as the map has to be loaded in full at pre-generation). 1. Run the script `generate.py` to generate a grid, preferentially from inside the mod's directory, but you can also run it directly in a Minetest world. See next paragraph for details about parameters.
```
./generate.py
```
2. Start Minetest, create a world with `singlenode` mapgen, enable `mapgen_rivers` mod, and launch the game. If you generated a grid in the world directory, it will copy it. If not, it will use the demo grid.
## Settings ## Parameters for `generate.py`
Settings can be found in Minetest in the `Settings` tab, `All settings` -> `Mods` -> `mapgen_rivers`. For a basic use you do not need to append any argument:
```
./generate.py
```
By default this will produce a 1000x1000 grid and save it in `river_data/`. Expect a computing time of about 30 minutes.
Most settings are world-specific and a copy is made in `mapgen_rivers.conf` in the world folder, during world first use, which means that further modification of global settings will not alter existing worlds. ### Parameters and config files
This pre-processing takes many parameters. Instead of asking all these parameters to the end user, they are grouped in `.conf` files for usability, but the script still allows to override individual settings.
Generic usage:
```
./generate.py conf_file output_dir
```
- `conf_file`: Path to configuration file from which parameters should be read. If omitted, attempts to read in `terrain.conf`.
- `output_dir`: Directory in which to save the grid data, defaults to `river_data/`. If it does not exist, it is created. If it already contains previous grid data, they are overwritten.
#### Config files
The mod currently includes 3 config files, providing different terrain styles:
- `terrain_default.conf` generates the standard terrain, with highest elevations around 250 with sharp peaks, and otherwise hilly terrain.
- `terrain_higher.conf` generates higher mountains (up to 400 nodes), and wider valleys.
- `terrain_original.conf` provides a terrain similar to what was generated with the first release of `mapgen_rivers`.
More work is needed to find better and more varied terrain styles.
### Complete list of parameters
Other parameters can be specified by `--parameter value`. Syntax `--parameter=value` is also supported.
| Parameter | Description | Example |
|---------------|-------------|---------|
| | **Generic parameters** |
| `mapsize` | Size of the grid, in number of cells per edge. Usually `1000`, so to have 1000x1000 cells, the grid will have 1001x1001 nodes. Note that the grid is upscaled 12x in the game (this ratio can be changed), so that a `mapsize` of 1000 will result in a 12000x12000 map by default. | `--mapsize 1000` |
| `sea_level` | Height of the sea; height below which a point is considered under water even if it is not in a closed depression. | `--sea_level 1` |
| | **Noise parameters** |
| `scale` | Horizontal variation wavlength of the largest noise octave, in grid cells (equivalent to the `spread` of a `PerlinNoise`). | `--scale 400` |
| `vscale` | Elevation coefficient, determines the approximate height difference between deepest seas and highest mountains. | `--vscale 300` |
| `offset` | Offset of the noise, will determine mean elevation. | `--offset 0` |
| `persistence` | Relative height of smaller noise octaves compared to bigger ones. | `--persistence 0.6` |
| `lacunarity` | Relative reduction of wavelength between octaves. If `lacunarity`×`persistence` is larger than 1 (usual case), smaller octaves result in higher slopes than larger ones. This case is interesting for rivers networks because slopes determine rivers position. | `--lacunarity 2` |
| | **Landscape evolution parameters**|
| `K` | Abstract erosion constant. Increasing it will increase erosive intensity. | `--K 1` |
| `m` | Parameter representing the influence of river flux on erosion. For `m=0`, small and big rivers are equal contributors to erosion. For `m=1` the erosive capability is proportional to river flux (assumed to be catchment area). Usual values: `0.25`-`0.60`. Be careful, this parameter is *highly sensitive*. | `--m 0.35` |
| `d` | Diffusion coefficient acting on sea/lake floor. Usual values `0`-`1`. | `--d 0.2` |
| `flex_radius` | Flexure radius. Wavelength over which loss/gain of mass is compensated by uplift/subsidence. This ensures that mountain ranges will not get eventually flattened by erosion, and that an equilibrium is reached. Geologically speaking, this implements [isostatic rebound](https://en.wikipedia.org/wiki/Isostasy). | `--flex_radius 20` |
| `time` | Simulated time of erosion modelling, in abstract units. | `--time 10` |
| `niter` | Number of iterations. Each iteration represents a time `time/niter`. | `--niter 10` |
| `sea_level_variations` | Amplitude of sea level variations throughout the simulation (if any). | `--sea_level_variations 10` |
| `sea_level_variations_time` | Characteristic time of variation for sea level, in the same units than `time`. Increasing it will result in slower variations between iterations. | `--sea_level_variations_time 1` |
| `flow_method` | Algorithm used for local flow calculation. Possible values are `steepest` (every node flows toward the steepest neighbour when possible), and `semirandom` (default, flow direction is determined randomly between lower neighbours, with lowest ones having greater probability). | `--flow_method semirandom` |
| | **Alternatives** |
| `config` | Another way to specify configuration file | `--config terrain_higher.conf` |
| `output` | Another way to specify output dir | `--output ~/.minetest/worlds/my_world/river_data` |
### Example
```
./generate.py terrain_higher.conf --mapsize 700 --K 0.4 --m 0.5
```
Reads parameters in `terrain_higher.conf`, and will generate a 700x700 grid using custom values for `K` and `m`.
## Map preview ## Map preview
The Python script `view_map.py` can display the full map. You need to have Python 3 installed, as well as the libraries `numpy`, `matplotlib`, and optionally `colorcet`. For `conda` users, an `environment.yml` file is provided. If you have `matplotlib` installed, `generate.py` will automatically show the grid aspect in real time during the erosion simulation.
It can be run from command line by passing the world folder. Example: There is also a script to view a generated map afterwards: `view_map.py`. Its syntax is the following:
``` ```
./view_map.py ~/.minetest/worlds/test_mg_rivers ./view_map.py grid blocksize
```
- `grid` is the path to the grid directory to view. For example `river_data/`.
- `blocksize` is the size at which 1 grid cell will be upscaled, in order to match game coordinates. If you use default settings, use `12`.
Example:
```
./view_map.py river_data 12
``` ```

View File

@ -1,34 +0,0 @@
local function fix_min_catchment(settings, is_global)
local prefix = is_global and "mapgen_rivers_" or ""
local min_catchment = settings:get(prefix.."min_catchment")
if min_catchment then
min_catchment = tonumber(min_catchment)
local blocksize = tonumber(settings:get(prefix.."blocksize") or 15)
settings:set(prefix.."min_catchment", tonumber(min_catchment) * blocksize*blocksize)
local max_catchment = settings:get(prefix.."max_catchment")
if max_catchment then
max_catchment = tonumber(max_catchment)
local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment)
settings:set(prefix.."river_widening_power", wpower)
end
end
end
local function fix_compatibility_minetest(settings)
local previous_version = settings:get("mapgen_rivers_version") or "0.0"
if previous_version == "0.0" then
fix_min_catchment(settings, true)
end
end
local function fix_compatibility_mapgen_rivers(settings)
local previous_version = settings:get("version") or "0.0"
if previous_version == "0.0" then
fix_min_catchment(settings, false)
end
end
return fix_compatibility_minetest, fix_compatibility_mapgen_rivers

BIN
demo_data/dem Normal file

Binary file not shown.

BIN
demo_data/dirs Normal file

Binary file not shown.

BIN
demo_data/lakes Normal file

Binary file not shown.

BIN
demo_data/offset_x Normal file

Binary file not shown.

BIN
demo_data/offset_y Normal file

Binary file not shown.

BIN
demo_data/rivers Normal file

Binary file not shown.

2
demo_data/size Normal file
View File

@ -0,0 +1,2 @@
401
401

View File

@ -1,10 +0,0 @@
name: mapgen_rivers
channels:
- conda-forge
dependencies:
- python
- matplotlib
- numpy
- colorcet

233
generate.py Executable file
View File

@ -0,0 +1,233 @@
#!/usr/bin/env python3
import numpy as np
from noise import snoise2, snoise3
import os
import sys
import terrainlib
class noisemap:
def __init__(self, X, Y, scale=0.01, vscale=1.0, tscale=1.0, offset=0.0, log=None, xbase=None, ybase=None, **params):
# Determine noise offset randomly
if xbase is None:
xbase = np.random.randint(8192)-4096
if ybase is None:
ybase = np.random.randint(8192)-4096
self.xbase = xbase
self.ybase = ybase
self.X = X
self.Y = Y
self.scale = scale
if log:
vscale /= offset
self.vscale = vscale
self.tscale = tscale
self.offset = offset
self.log = log
self.params = params
def get2d(self):
n = np.zeros((self.X, self.Y))
for x in range(self.X):
for y in range(self.Y):
n[x,y] = snoise2(x/self.scale + self.xbase, y/self.scale + self.ybase, **self.params)
if self.log:
return np.exp(n*self.vscale) * self.offset
else:
return n*self.vscale + self.offset
def get3d(self, t=0):
t /= self.tscale
n = np.zeros((self.X, self.Y))
for x in range(self.X):
for y in range(self.Y):
n[x,y] = snoise3(x/self.scale + self.xbase, y/self.scale + self.ybase, t, **self.params)
if self.log:
return np.exp(n*self.vscale) * self.offset
else:
return n*self.vscale + self.offset
### PARSE COMMAND-LINE ARGUMENTS
argc = len(sys.argv)
config_file = 'terrain_default.conf'
output_dir = 'river_data'
params_from_args = {}
i = 1 # Index of arguments
j = 1 # Number of 'orphan' arguments (the ones that are not preceded by '--something')
while i < argc:
arg = sys.argv[i]
if arg[:2] == '--':
pname = arg[2:]
v = None
split = pname.split('=', maxsplit=1)
if len(split) == 2:
pname, v = split
i += 1
elif i+1 < argc:
v = sys.argv[i+1]
i += 2
if v is not None:
if pname == 'config':
config_file = v
elif pname == 'output':
output_dir = v
else:
params_from_args[pname] = v
else:
if j == 1:
config_file = arg
elif j == 2:
output_dir = arg
i += 1
j += 1
print(config_file, output_dir)
params = terrainlib.read_config_file(config_file)
params.update(params_from_args) # Params given from args prevail against conf file
### READ SETTINGS
def get_setting(name, default):
if name in params:
return params[name]
return default
mapsize = int(get_setting('mapsize', 1000))
scale = float(get_setting('scale', 400.0))
vscale = float(get_setting('vscale', 300.0))
offset = float(get_setting('offset', 0.0))
persistence = float(get_setting('persistence', 0.6))
lacunarity = float(get_setting('lacunarity', 2.0))
K = float(get_setting('K', 0.5))
m = float(get_setting('m', 0.5))
d = float(get_setting('d', 0.5))
sea_level = float(get_setting('sea_level', 0.0))
sea_level_variations = float(get_setting('sea_level_variations', 0.0))
sea_level_variations_time = float(get_setting('sea_level_variations_time', 1.0))
flex_radius = float(get_setting('flex_radius', 20.0))
tectonics_time = float(get_setting('tectonics_time', 0.0))
flow_method = get_setting('flow_method', 'semirandom')
time = float(get_setting('time', 10.0))
niter = int(get_setting('niter', 10))
### MAKE INITIAL TOPOGRAPHY
n = np.zeros((mapsize+1, mapsize+1))
# Set noise parameters
params = {
"offset" : offset,
"vscale" : vscale,
"scale" : scale,
"octaves" : int(np.ceil(np.log2(mapsize)))+1,
"persistence" : persistence,
"lacunarity" : lacunarity,
}
params_sealevel = {
"octaves" : 1,
"persistence" : 1,
"lacunarity" : 2,
}
params_K = {
"offset" : K,
"vscale" : K,
"scale" : 400,
"octaves" : 1,
"persistence" : 0.5,
"lacunarity" : 2,
"log" : True,
}
params_m = {
"offset" : m,
"vscale" : m*0.2,
"scale" : 400,
"octaves" : 1,
"persistence" : 0.5,
"lacunarity" : 2,
"log" : False,
}
if sea_level_variations != 0.0:
sea_ybase = np.random.randint(8192)-4096
sea_level_ref = snoise2(time * (1-1/niter) / sea_level_variations, sea_ybase, **params_sealevel) * sea_level_variations
params['offset'] -= (sea_level_ref + sea_level)
if tectonics_time == 0.0:
n = noisemap(mapsize+1, mapsize+1, **params).get2d()
else:
terrain_noisemap = noisemap(mapsize+1, mapsize+1, tscale=tectonics_time, **params)
n = terrain_noisemap.get3d()
m_map = noisemap(mapsize+1, mapsize+1, **params_m).get2d()
K_map = noisemap(mapsize+1, mapsize+1, **params_K).get2d()
### COMPUTE LANDSCAPE EVOLUTION
# Initialize landscape evolution model
print('Initializing model')
model = terrainlib.EvolutionModel(n, K=K_map, m=m_map, d=K_map, sea_level=sea_level, flex_radius=flex_radius, flow_method=flow_method)
terrainlib.update(model.dem, model.lakes, t=5, sea_level=model.sea_level, title='Initializing...')
dt = time/niter
# Run the model's processes: the order in which the processes are run is arbitrary and could be changed.
for i in range(niter):
disp_niter = 'Iteration {:d} of {:d}...'.format(i+1, niter)
if sea_level_variations != 0:
model.sea_level = snoise2((i*dt)/sea_level_variations_time, sea_ybase, **params_sealevel) * sea_level_variations - sea_level_ref
terrainlib.update(model.dem, model.lakes, sea_level=model.sea_level, title=disp_niter)
print(disp_niter)
print('Diffusion')
model.diffusion(dt)
print('Flow calculation')
model.calculate_flow()
terrainlib.update(model.dem, model.lakes, sea_level=model.sea_level, title=disp_niter)
print('Advection')
model.advection(dt)
if tectonics_time != 0.0:
print('Isostasy reference redefinition')
model.define_isostasy(terrain_noisemap.get3d((i+1)*dt))
print('Isostatic equilibration')
model.adjust_isostasy()
print('Last flow calculation')
model.calculate_flow()
print('Done!')
# Twist the grid
bx, by = terrainlib.make_bounds(model.dirs, model.rivers)
offset_x, offset_y = terrainlib.twist(bx, by, terrainlib.get_fixed(model.dirs))
# Convert offset in 8-bits
offset_x = np.clip(np.floor(offset_x * 256), -128, 127)
offset_y = np.clip(np.floor(offset_y * 256), -128, 127)
### SAVE OUTPUT
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
os.chdir(output_dir)
# Save the files
terrainlib.save(model.dem, 'dem', dtype='>i2')
terrainlib.save(model.lakes, 'lakes', dtype='>i2')
terrainlib.save(offset_x, 'offset_x', dtype='i1')
terrainlib.save(offset_y, 'offset_y', dtype='i1')
terrainlib.save(model.dirs, 'dirs', dtype='u1')
terrainlib.save(model.rivers, 'rivers', dtype='>u4')
with open('size', 'w') as sfile:
sfile.write('{:d}\n{:d}'.format(mapsize+1, mapsize+1))
terrainlib.stats(model.dem, model.lakes)
print()
print('Grid is ready for use!')
terrainlib.plot(model.dem, model.lakes, title='Final grid, ready for use!')

View File

@ -1,10 +1,11 @@
local modpath = mapgen_rivers.modpath local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/'
local make_polygons = dofile(modpath .. 'polygons.lua') local make_polygons = dofile(modpath .. 'polygons.lua')
local transform_quadri = dofile(modpath .. 'geometry.lua') local transform_quadri = dofile(modpath .. 'geometry.lua')
local sea_level = mapgen_rivers.settings.sea_level local blocksize = mapgen_rivers.blocksize
local riverbed_slope = mapgen_rivers.settings.riverbed_slope * mapgen_rivers.settings.blocksize local sea_level = mapgen_rivers.sea_level
local riverbed_slope = mapgen_rivers.riverbed_slope
local MAP_BOTTOM = -31000 local MAP_BOTTOM = -31000

View File

@ -1,15 +1,15 @@
mapgen_rivers = {} mapgen_rivers = {}
local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/' local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/'
mapgen_rivers.modpath = modpath
mapgen_rivers.world_data_path = minetest.get_worldpath() .. '/river_data/'
dofile(modpath .. 'settings.lua') dofile(modpath .. 'settings.lua')
local sea_level = mapgen_rivers.settings.sea_level local blocksize = mapgen_rivers.blocksize
local elevation_chill = mapgen_rivers.settings.elevation_chill local sea_level = mapgen_rivers.sea_level
local use_distort = mapgen_rivers.settings.distort local riverbed_slope = mapgen_rivers.riverbed_slope
local use_biomes = mapgen_rivers.settings.biomes local elevation_chill = mapgen_rivers.elevation_chill
local use_distort = mapgen_rivers.distort
local use_biomes = mapgen_rivers.biomes
local use_biomegen_mod = use_biomes and minetest.global_exists('biomegen') local use_biomegen_mod = use_biomes and minetest.global_exists('biomegen')
use_biomes = use_biomes and not use_biomegen_mod use_biomes = use_biomes and not use_biomegen_mod
@ -38,13 +38,7 @@ local noise_heat_blend_map = {}
local mapsize local mapsize
local init = false local init = false
local sumtime = 0
local sumtime2 = 0
local ngen = 0
local function generate(minp, maxp, seed) local function generate(minp, maxp, seed)
print(("[mapgen_rivers] Generating from %s to %s"):format(minetest.pos_to_string(minp), minetest.pos_to_string(maxp)))
local chulens = { local chulens = {
x = maxp.x-minp.x+1, x = maxp.x-minp.x+1,
y = maxp.y-minp.y+1, y = maxp.y-minp.y+1,
@ -69,7 +63,6 @@ local function generate(minp, maxp, seed)
init = true init = true
end end
local t0 = os.clock()
local minp2d = {x=minp.x, y=minp.z} local minp2d = {x=minp.x, y=minp.z}
if use_distort then if use_distort then
noise_x_obj:get_3d_map_flat(minp, noise_x_map) noise_x_obj:get_3d_map_flat(minp, noise_x_map)
@ -228,18 +221,6 @@ local function generate(minp, maxp, seed)
vm:calc_lighting() vm:calc_lighting()
vm:update_liquids() vm:update_liquids()
vm:write_to_map() vm:write_to_map()
local t1 = os.clock()
local t = t1-t0
ngen = ngen + 1
sumtime = sumtime + t
sumtime2 = sumtime2 + t*t
print(("[mapgen_rivers] Done in %5.3f s"):format(t))
end end
minetest.register_on_generated(generate) minetest.register_on_generated(generate)
minetest.register_on_shutdown(function()
local avg = sumtime / ngen
local std = math.sqrt(sumtime2/ngen - avg*avg)
print(("[mapgen_rivers] Mapgen statistics:\n- Mapgen calls: %4d\n- Mean time: %5.3f s\n- Standard deviation: %5.3f s"):format(ngen, avg, std))
end)

View File

@ -1,100 +1,31 @@
local worldpath = mapgen_rivers.world_data_path local worldpath = minetest.get_worldpath() .. "/river_data/"
function mapgen_rivers.load_map(filename, bytes, signed, size, converter) local function load_map(filename, bytes, signed, size)
local file = io.open(worldpath .. filename, 'rb') local file = io.open(worldpath .. filename, 'rb')
local data = file:read('*all') local data = file:read('*all')
if #data < bytes*size then if #data < bytes*size then
data = minetest.decompress(data) data = minetest.decompress(data)
end end
local sbyte = string.byte
local map = {} local map = {}
for i=1, size do for i=1, size do
local i0 = (i-1)*bytes+1 local i0, i1 = (i-1)*bytes+1, i*bytes
local elements = {data:byte(i0, i1)} local elements = {data:byte(i0, i1)}
local n = sbyte(data, i0) local n = elements[1]
if signed and n >= 128 then if signed and n >= 128 then
n = n - 256 n = n - 256
end end
for j=1, bytes-1 do for j=2, bytes do
n = n*256 + sbyte(data, i0+j) n = n*256 + elements[j]
end end
map[i] = n map[i] = n
end end
file:close() file:close()
if converter then
for i=1, size do
map[i] = converter(map[i])
end
end
return map return map
end end
local sbyte = string.byte return load_map
local loader_mt = {
__index = function(loader, i)
local file = loader.file
local bytes = loader.bytes
file:seek('set', (i-1)*bytes)
local strnum = file:read(bytes)
local n = sbyte(strnum, 1)
if loader.signed and n >= 128 then
n = n - 256
end
for j=2, bytes do
n = n*256 + sbyte(strnum, j)
end
if loader.conv then
n = loader.conv(n)
end
loader[i] = n
return n
end,
}
function mapgen_rivers.interactive_loader(filename, bytes, signed, size, converter)
local file = io.open(worldpath .. filename, 'rb')
if file then
minetest.register_on_shutdown(function()
file:close()
end)
converter = converter or false
return setmetatable({file=file, bytes=bytes, signed=signed, size=size, conv=converter}, loader_mt)
end
end
function mapgen_rivers.write_map(filename, data, bytes)
local size = #data
local file = io.open(worldpath .. filename, 'wb')
local mfloor = math.floor
local schar = string.char
local upack = unpack
local bytelist = {}
for j=1, bytes do
bytelist[j] = 0
end
for i=1, size do
local n = mfloor(data[i])
data[i] = n
for j=bytes, 2, -1 do
bytelist[j] = n % 256
n = mfloor(n / 256)
end
bytelist[1] = n % 256
file:write(schar(upack(bytelist)))
end
file:close()
end

View File

@ -1,18 +1,5 @@
local def_setting = mapgen_rivers.define_setting
mapgen_rivers.noise_params = { mapgen_rivers.noise_params = {
base = def_setting('np_base', 'noise', { distort_x = {
offset = 0,
scale = 300,
seed = 2469,
octaves = 8,
spread = {x=2048, y=2048, z=2048},
persist = 0.6,
lacunarity = 2,
flags = "eased",
}),
distort_x = def_setting('np_distort_x', 'noise', {
offset = 0, offset = 0,
scale = 1, scale = 1,
seed = -4574, seed = -4574,
@ -20,9 +7,9 @@ mapgen_rivers.noise_params = {
octaves = 3, octaves = 3,
persistence = 0.75, persistence = 0.75,
lacunarity = 2, lacunarity = 2,
}), },
distort_z = def_setting('np_distort_z', 'noise', { distort_z = {
offset = 0, offset = 0,
scale = 1, scale = 1,
seed = -7940, seed = -7940,
@ -30,9 +17,9 @@ mapgen_rivers.noise_params = {
octaves = 3, octaves = 3,
persistence = 0.75, persistence = 0.75,
lacunarity = 2, lacunarity = 2,
}), },
distort_amplitude = def_setting('np_distort_amplitude', 'noise', { distort_amplitude = {
offset = 0, offset = 0,
scale = 10, scale = 10,
seed = 676, seed = 676,
@ -41,40 +28,10 @@ mapgen_rivers.noise_params = {
persistence = 0.5, persistence = 0.5,
lacunarity = 2, lacunarity = 2,
flags = "absvalue", flags = "absvalue",
}), },
heat = minetest.get_mapgen_setting_noiseparams('mg_biome_np_heat'), heat = minetest.get_mapgen_setting_noiseparams('mg_biome_np_heat'),
heat_blend = minetest.get_mapgen_setting_noiseparams('mg_biome_np_heat_blend'), heat_blend = minetest.get_mapgen_setting_noiseparams('mg_biome_np_heat_blend'),
} }
-- Convert to number because Minetest API is not able to do it cleanly... mapgen_rivers.noise_params.heat.offset = mapgen_rivers.noise_params.heat.offset + mapgen_rivers.sea_level*mapgen_rivers.elevation_chill
for name, np in pairs(mapgen_rivers.noise_params) do
for field, value in pairs(np) do
if field ~= 'flags' and type(value) == 'string' then
np[field] = tonumber(value) or value
elseif field == 'spread' then
for dir, v in pairs(value) do
value[dir] = tonumber(v) or v
end
end
end
end
local heat = mapgen_rivers.noise_params.heat
local base = mapgen_rivers.noise_params.base
local settings = mapgen_rivers.settings
heat.offset = heat.offset + settings.sea_level * settings.elevation_chill
base.spread.x = base.spread.x / settings.blocksize
base.spread.y = base.spread.y / settings.blocksize
base.spread.z = base.spread.z / settings.blocksize
for name, np in pairs(mapgen_rivers.noise_params) do
local lac = np.lacunarity or 2
if lac > 1 then
local omax = math.floor(math.log(math.min(np.spread.x, np.spread.y, np.spread.z)) / math.log(lac))+1
if np.octaves > omax then
print("[mapgen_rivers] Noise " .. name .. ": 'octaves' reduced to " .. omax)
np.octaves = omax
end
end
end

View File

@ -1,98 +1,76 @@
local modpath = mapgen_rivers.modpath local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/'
local mod_data_path = modpath .. 'river_data/' local mod_data_path = modpath .. 'river_data/'
if not io.open(mod_data_path .. 'size', 'r') then if not io.open(mod_data_path .. 'size', 'r') then
mod_data_path = modpath .. 'demo_data/' mod_data_path = modpath .. 'demo_data/'
end end
local world_data_path = mapgen_rivers.world_data_path local world_data_path = minetest.get_worldpath() .. '/river_data/'
minetest.mkdir(world_data_path) minetest.mkdir(world_data_path)
dofile(modpath .. 'load.lua') local load_map = dofile(modpath .. 'load.lua')
mapgen_rivers.grid = {} local function copy_if_needed(filename)
local wfilename = world_data_path..filename
local X = mapgen_rivers.settings.grid_x_size local wfile = io.open(wfilename, 'rb')
local Z = mapgen_rivers.settings.grid_z_size if wfile then
wfile:close()
local function offset_converter(o) return
return (o + 0.5) * (1/256) end
local mfilename = mod_data_path..filename
local mfile = io.open(mfilename, 'rb')
local wfile = io.open(wfilename, 'wb')
wfile:write(mfile:read("*all"))
mfile:close()
wfile:close()
end end
local load_all = mapgen_rivers.settings.load_all copy_if_needed('size')
-- Try to read file 'size'
local sfile = io.open(world_data_path..'size', 'r') local sfile = io.open(world_data_path..'size', 'r')
local first_mapgen = true local X = tonumber(sfile:read('*l'))
if sfile then local Z = tonumber(sfile:read('*l'))
X, Z = tonumber(sfile:read('*l')), tonumber(sfile:read('*l'))
sfile:close() sfile:close()
first_mapgen = false
copy_if_needed('dem')
local dem = load_map('dem', 2, true, X*Z)
copy_if_needed('lakes')
local lakes = load_map('lakes', 2, true, X*Z)
copy_if_needed('dirs')
local dirs = load_map('dirs', 1, false, X*Z)
copy_if_needed('rivers')
local rivers = load_map('rivers', 4, false, X*Z)
copy_if_needed('offset_x')
local offset_x = load_map('offset_x', 1, true, X*Z)
for k, v in ipairs(offset_x) do
offset_x[k] = (v+0.5)/256
end end
if first_mapgen then copy_if_needed('offset_y')
-- Generate a map!! local offset_z = load_map('offset_y', 1, true, X*Z)
local pregenerate = dofile(mapgen_rivers.modpath .. '/pregenerate.lua') for k, v in ipairs(offset_z) do
minetest.register_on_mods_loaded(function() offset_z[k] = (v+0.5)/256
print('[mapgen_rivers] Generating grid')
pregenerate(load_all)
if load_all then
local offset_x = mapgen_rivers.grid.offset_x
local offset_y = mapgen_rivers.grid.offset_y
for i=1, X*Z do
offset_x[i] = offset_converter(offset_x[i])
offset_y[i] = offset_converter(offset_y[i])
end
end
end)
end end
-- if data not already loaded -- To index a flat array representing a 2D map
if not (first_mapgen and load_all) then
local load_map
if load_all then
load_map = mapgen_rivers.load_map
else
load_map = mapgen_rivers.interactive_loader
end
minetest.register_on_mods_loaded(function()
if load_all then
print('[mapgen_rivers] Loading full grid')
else
print('[mapgen_rivers] Loading grid as interactive loaders')
end
local grid = mapgen_rivers.grid
grid.dem = load_map('dem', 2, true, X*Z)
grid.lakes = load_map('lakes', 2, true, X*Z)
grid.dirs = load_map('dirs', 1, false, X*Z)
grid.rivers = load_map('rivers', 4, false, X*Z)
grid.offset_x = load_map('offset_x', 1, true, X*Z, offset_converter)
grid.offset_y = load_map('offset_y', 1, true, X*Z, offset_converter)
end)
end
mapgen_rivers.grid.size = {x=X, y=Z}
local function index(x, z) local function index(x, z)
return z*X+x+1 return z*X+x+1
end end
local blocksize = mapgen_rivers.settings.blocksize local blocksize = mapgen_rivers.blocksize
local min_catchment = mapgen_rivers.settings.min_catchment local min_catchment = mapgen_rivers.min_catchment
local max_catchment = mapgen_rivers.settings.max_catchment local max_catchment = mapgen_rivers.max_catchment
local map_offset = {x=0, z=0} local map_offset = {x=0, z=0}
if mapgen_rivers.settings.center then if mapgen_rivers.center then
map_offset.x = blocksize*X/2 map_offset.x = blocksize*X/2
map_offset.z = blocksize*Z/2 map_offset.z = blocksize*Z/2
end end
local min_catchment = mapgen_rivers.settings.min_catchment / (blocksize*blocksize) -- Width coefficients: coefficients solving
local wpower = mapgen_rivers.settings.river_widening_power -- wfactor * min_catchment ^ wpower = 1/(2*blocksize)
local wfactor = 1/(2*blocksize * min_catchment^wpower) -- wfactor * max_catchment ^ wpower = 1
local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment)
local wfactor = 1 / max_catchment ^ wpower
local function river_width(flow) local function river_width(flow)
flow = math.abs(flow) flow = math.abs(flow)
if flow < min_catchment then if flow < min_catchment then
@ -103,29 +81,22 @@ local function river_width(flow)
end end
local noise_heat -- Need a large-scale noise here so no heat blend local noise_heat -- Need a large-scale noise here so no heat blend
local elevation_chill = mapgen_rivers.settings.elevation_chill local elevation_chill = mapgen_rivers.elevation_chill
local function get_temperature(x, y, z) local function get_temperature(x, y, z)
local pos = {x=x, y=z} local pos = {x=x, y=z}
return noise_heat:get2d(pos) - y*elevation_chill return noise_heat:get2d(pos) - y*elevation_chill
end end
local glaciers = mapgen_rivers.settings.glaciers local glaciers = mapgen_rivers.glaciers
local glacier_factor = mapgen_rivers.settings.glacier_factor local glacier_factor = mapgen_rivers.glacier_factor
local init = false local init = false
-- On map generation, determine into which polygon every point (in 2D) will fall. -- On map generation, determine into which polygon every point (in 2D) will fall.
-- Also store polygon-specific data -- Also store polygon-specific data
local function make_polygons(minp, maxp) local function make_polygons(minp, maxp)
print("Generating polygon map")
local grid = mapgen_rivers.grid print(minp.x, maxp.x, minp.z, maxp.z)
local dem = grid.dem
local lakes = grid.lakes
local dirs = grid.dirs
local rivers = grid.rivers
local offset_x = grid.offset_x
local offset_z = grid.offset_y
if not init then if not init then
if glaciers then if glaciers then
@ -140,6 +111,7 @@ local function make_polygons(minp, maxp)
-- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize. -- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize.
local xpmin, xpmax = math.max(math.floor((minp.x+map_offset.x)/blocksize - 0.5), 0), math.min(math.ceil((maxp.x+map_offset.x)/blocksize + 0.5), X-2) local xpmin, xpmax = math.max(math.floor((minp.x+map_offset.x)/blocksize - 0.5), 0), math.min(math.ceil((maxp.x+map_offset.x)/blocksize + 0.5), X-2)
local zpmin, zpmax = math.max(math.floor((minp.z+map_offset.z)/blocksize - 0.5), 0), math.min(math.ceil((maxp.z+map_offset.z)/blocksize + 0.5), Z-2) local zpmin, zpmax = math.max(math.floor((minp.z+map_offset.z)/blocksize - 0.5), 0), math.min(math.ceil((maxp.z+map_offset.z)/blocksize + 0.5), Z-2)
print(xpmin, xpmax, zpmin, zpmax)
-- Iterate over the polygons -- Iterate over the polygons
for xp = xpmin, xpmax do for xp = xpmin, xpmax do
@ -161,6 +133,9 @@ local function make_polygons(minp, maxp)
(offset_z[iC]+zp+1) * blocksize - map_offset.z, (offset_z[iC]+zp+1) * blocksize - map_offset.z,
(offset_z[iD]+zp+1) * blocksize - map_offset.z, (offset_z[iD]+zp+1) * blocksize - map_offset.z,
} }
if xp==xpmin and zp==zpmin then
print(xp, zp, poly_x[1], poly_z[1])
end
local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}} local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}}
local bounds = {} -- Will be a list of the intercepts of polygon edges for every Z position (scanline algorithm) local bounds = {} -- Will be a list of the intercepts of polygon edges for every Z position (scanline algorithm)

View File

@ -1,81 +0,0 @@
local EvolutionModel = dofile(mapgen_rivers.modpath .. '/terrainlib_lua/erosion.lua')
local twist = dofile(mapgen_rivers.modpath .. '/terrainlib_lua/twist.lua')
local blocksize = mapgen_rivers.settings.blocksize
local tectonic_speed = mapgen_rivers.settings.tectonic_speed
local np_base = table.copy(mapgen_rivers.noise_params.base)
local evol_params = mapgen_rivers.settings.evol_params
local time = mapgen_rivers.settings.evol_time
local time_step = mapgen_rivers.settings.evol_time_step
local niter = math.ceil(time/time_step)
time_step = time / niter
local function pregenerate(keep_loaded)
local grid = mapgen_rivers.grid
local size = grid.size
local seed = tonumber(minetest.get_mapgen_setting("seed"))
np_base.seed = (np_base.seed or 0) + seed
local nobj_base = PerlinNoiseMap(np_base, {x=size.x, y=1, z=size.y})
local dem = nobj_base:get_3d_map_flat({x=0, y=0, z=0})
dem.X = size.x
dem.Y = size.y
local model = EvolutionModel(evol_params)
model.dem = dem
local ref_dem = model:define_isostasy(dem)
local tectonic_step = tectonic_speed * time_step
collectgarbage()
for i=1, niter do
print("[mapgen_rivers] Iteration " .. i .. " of " .. niter)
model:diffuse(time_step)
model:flow()
model:erode(time_step)
if i < niter then
if tectonic_step ~= 0 then
nobj_base:get_3d_map_flat({x=0, y=tectonic_step*i, z=0}, ref_dem)
end
model:isostasy()
end
collectgarbage()
end
model:flow()
local mfloor = math.floor
local mmin, mmax = math.min, math.max
local offset_x, offset_y = twist(model.dirs, model.rivers, 5)
for i=1, size.x*size.y do
offset_x[i] = mmin(mmax(offset_x[i]*256, -128), 127)
offset_y[i] = mmin(mmax(offset_y[i]*256, -128), 127)
end
mapgen_rivers.write_map('dem', model.dem, 2)
mapgen_rivers.write_map('lakes', model.lakes, 2)
mapgen_rivers.write_map('dirs', model.dirs, 1)
mapgen_rivers.write_map('rivers', model.rivers, 4)
mapgen_rivers.write_map('offset_x', offset_x, 1)
mapgen_rivers.write_map('offset_y', offset_y, 1)
local sfile = io.open(mapgen_rivers.world_data_path .. 'size', "w")
sfile:write(size.x..'\n'..size.y)
sfile:close()
if keep_loaded then
grid.dem = model.dem
grid.lakes = model.lakes
grid.dirs = model.dirs
grid.rivers = model.rivers
grid.offset_x = offset_x
grid.offset_y = offset_y
end
collectgarbage()
end
return pregenerate

View File

@ -1,42 +0,0 @@
def read_conf_file(filename):
f = open(filename, 'r')
return read_conf(f)
def read_conf(f, end_tag=None):
conf = {}
while True:
line = f.readline()
if len(line) == 0:
return conf
line = line.strip()
if line == end_tag:
return conf
if len(line) == 0 or line[0] == '#':
continue
eqpos = line.find('=')
if eqpos < 0:
continue
name, value = line[:eqpos].rstrip(), line[eqpos+1:].lstrip()
if value == '{':
# Group
conf[name] = read_conf(f, end_tag='}')
elif value == '"""':
# Multiline
conf[value] = read_multiline(f)
else:
conf[name] = value
def read_multiline(f):
mline = ''
while True:
line = f.readline()
if len(line) == 0:
return mline
line = line.strip()
if line == '"""':
return mline
mline += line + '\n'

View File

@ -1,95 +1,58 @@
local mtsettings = minetest.settings local storage = minetest.get_mod_storage()
local mgrsettings = Settings(minetest.get_worldpath() .. '/mapgen_rivers.conf') local settings = minetest.settings
mapgen_rivers.version = "1.0" local function get_settings(key, dtype, default)
if storage:contains(key) then
local previous_version_mt = mtsettings:get("mapgen_rivers_version") or "0.0" if dtype == "string" then
local previous_version_mgr = mgrsettings:get("version") or "0.0" return storage:get_string(key)
elseif dtype == "int" then
if mapgen_rivers.version ~= previous_version_mt or mapgen_rivers.version ~= previous_version_mgr then return storage:get_int(key)
local compat_mt, compat_mgr = dofile(minetest.get_modpath(minetest.get_current_modname()) .. "/compatibility.lua") elseif dtype == "float" then
if mapgen_rivers.version ~= previous_version_mt then return storage:get_float(key)
compat_mt(mtsettings)
end
if mapgen_rivers.version ~= previous_version_mgr then
compat_mgr(mgrsettings)
end
end
mtsettings:set("mapgen_rivers_version", mapgen_rivers.version)
mgrsettings:set("version", mapgen_rivers.version)
function mapgen_rivers.define_setting(name, dtype, default)
if dtype == "number" or dtype == "string" then
local v = mgrsettings:get(name)
if v == nil then
v = mtsettings:get('mapgen_rivers_' .. name)
if v == nil then
v = default
end
mgrsettings:set(name, v)
end
if dtype == "number" then
return tonumber(v)
else
return v
end
elseif dtype == "bool" then elseif dtype == "bool" then
local v = mgrsettings:get_bool(name) return storage:get_string(key) == 'true'
if v == nil then
v = mtsettings:get_bool('mapgen_rivers_' .. name)
if v == nil then
v = default
end
mgrsettings:set_bool(name, v)
end
return v
elseif dtype == "noise" then
local v = mgrsettings:get_np_group(name)
if v == nil then
v = mtsettings:get_np_group('mapgen_rivers_' .. name)
if v == nil then
v = default
end
mgrsettings:set_np_group(name, v)
end
return v
end end
end end
local def_setting = mapgen_rivers.define_setting local conf_val = settings:get('mapgen_rivers_' .. key)
if conf_val then
mapgen_rivers.settings = { if dtype == "int" then
center = def_setting('center', 'bool', true), conf_val = tonumber(conf_val)
blocksize = def_setting('blocksize', 'number', 15), storage:set_int(key, conf_val)
sea_level = tonumber(minetest.get_mapgen_setting('water_level')), elseif dtype == "float" then
min_catchment = def_setting('min_catchment', 'number', 3600), conf_val = tonumber(conf_val)
river_widening_power = def_setting('river_widening_power', 'number', 0.5), storage:set_float(key, conf_val)
riverbed_slope = def_setting('riverbed_slope', 'number', 0.4), else
distort = def_setting('distort', 'bool', true), storage:set_string(key, conf_val)
biomes = def_setting('biomes', 'bool', true), if dtype == "bool" then
glaciers = def_setting('glaciers', 'bool', false), conf_val = conf_val == 'true'
glacier_factor = def_setting('glacier_factor', 'number', 8), end
elevation_chill = def_setting('elevation_chill', 'number', 0.25),
grid_x_size = def_setting('grid_x_size', 'number', 1000),
grid_z_size = def_setting('grid_z_size', 'number', 1000),
evol_params = {
K = def_setting('river_erosion_coef', 'number', 0.5),
m = def_setting('river_erosion_power', 'number', 0.4),
d = def_setting('diffusive_erosion', 'number', 0.5),
compensation_radius = def_setting('compensation_radius', 'number', 50),
},
tectonic_speed = def_setting('tectonic_speed', 'number', 70),
evol_time = def_setting('evol_time', 'number', 10),
evol_time_step = def_setting('evol_time_step', 'number', 1),
load_all = mtsettings:get_bool('mapgen_rivers_load_all')
}
local function write_settings()
mgrsettings:write()
end end
minetest.register_on_mods_loaded(write_settings) return conf_val
minetest.register_on_shutdown(write_settings) else
if dtype == "int" then
storage:set_int(key, default)
elseif dtype == "float" then
storage:set_float(key, default)
elseif dtype == "string" then
storage:set_string(key, default)
elseif dtype == "bool" then
storage:set_string(key, tostring(default))
end
return default
end
end
mapgen_rivers.center = get_settings('center', 'bool', false)
mapgen_rivers.blocksize = get_settings('blocksize', 'int', 12)
mapgen_rivers.sea_level = get_settings('sea_level', 'int', 1)
mapgen_rivers.min_catchment = get_settings('min_catchment', 'float', 25)
mapgen_rivers.max_catchment = get_settings('max_catchment', 'float', 40000)
mapgen_rivers.riverbed_slope = get_settings('riverbed_slope', 'float', 0.4) * mapgen_rivers.blocksize
mapgen_rivers.distort = get_settings('distort', 'bool', true)
mapgen_rivers.biomes = get_settings('biomes', 'bool', true)
mapgen_rivers.glaciers = get_settings('glaciers', 'bool', false)
mapgen_rivers.glacier_factor = get_settings('glacier_factor', 'float', 8)
mapgen_rivers.elevation_chill = get_settings('elevation_chill', 'float', 0.25)

View File

@ -1,31 +1,26 @@
# File containing all settings for 'mapgen_rivers' mod. # File containing all settings for 'mapgen_rivers' mod.
# Whether the map should be centered at x=0, z=0. # Whether the map should be centered at x=0, z=0.
mapgen_rivers_center (Center map) bool true mapgen_rivers_center (Center map) bool false
# Represents horizontal map scale. Every cell of the grid will be upscaled to # Represents horizontal map scale. Every cell of the grid will be upscaled to
# a square of this size. # a square of this size.
# For example if the grid size is 1000x1000 and block size is 12, # For example if the grid size is 1000x1000 and block size is 12,
# the actual size of the map will be 12000. # the actual size of the map will be 15000.
mapgen_rivers_blocksize (Block size) float 15.0 2.0 100.0 mapgen_rivers_blocksize (Block size) float 12.0 2.0 40.0
# X size of the grid being generated # Sea level used by mapgen_rivers
# Actual size of the map is grid_x_size * blocksize mapgen_rivers_sea_level (Sea level) int 1
mapgen_rivers_grid_x_size (Grid X size) int 1000 50 5000
# Z size of the grid being generated # Minimal catchment area for a river to be drawn, in grid cells
# Actual size of the map is grid_z_size * blocksize # (1 cell = blocksize x blocksize).
mapgen_rivers_grid_z_size (Grid Z size) int 1000 50 5000
# Minimal catchment area for a river to be drawn, in square nodes
# Lower value means bigger river density # Lower value means bigger river density
mapgen_rivers_min_catchment (Minimal catchment area) float 3600.0 100.0 1000000.0 mapgen_rivers_min_catchment (Minimal catchment area) float 25.0 1.0 1000.0
# Coefficient describing how rivers widen when merging. # Catchment area in grid cells (1 grid cell = blocksize x blocksize)
# Riwer width is a power law W = a*D^p. D is river flow and p is this parameter. # at which rivers reach their maximal width of 2*blocksize.
# Higher value means a river needs to receive more tributaries to grow in width. # Higher value means a river needs to receive more tributaries to grow in width.
# Note that a river can never exceed 2*blocksize. mapgen_rivers_max_catchment (Maximal catchment area) float 40000.0 1000.0 10000000.0
mapgen_rivers_river_widening_power (River widening power) float 0.5 0.0 1.0
# Lateral slope of the riverbed. # Lateral slope of the riverbed.
# Higher value means deeper rivers. # Higher value means deeper rivers.
@ -54,64 +49,4 @@ mapgen_rivers_glacier_widening_factor (Glacier widening factor) float 8.0 1.0 20
# This results in mountains being more covered by snow. # This results in mountains being more covered by snow.
mapgen_rivers_elevation_chill (Elevation chill) float 0.25 0.0 5.0 mapgen_rivers_elevation_chill (Elevation chill) float 0.25 0.0 5.0
# If enabled, loads all grid data in memory at init time. # Noises: to be added. For now they are hardcoded.
# If disabled, data will be loaded on request and cached in memory.
# It's recommended to disable it for very large maps (> 2000 grid nodes or so)
mapgen_rivers_load_all (Load all data in memory) bool false
[Landscape evolution parameters]
# Modelled landscape evolution time, in arbitrary units
mapgen_rivers_evol_time (Landscape evolution time) float 10.0 0.0 100.0
# Model time steps in arbitrary units
# Smaller values will result in more time steps to be necessary to
# complete the simulation, taking more time.
mapgen_rivers_evol_time_step (Landscape evolution time step) float 1.0 0.0 50.0
# To adjust river erosion proportionnally.
# This type of erosion acts by deepening the valleys.
mapgen_rivers_river_erosion_coef (River erosion coefficient) float 0.5 0.0 10.0
# Represents how much river erosion depends on river flow (catchment area).
# Catchment area is elevated to this power.
# Extreme cases: 0.0 -> All rivers have the same erosive capabilities
# 1.0 -> Erosion is proportional to river flow
# Reasonable values are generally between 0.4 and 0.7.
#
# This parameter is extremely sensitive, and changes may require to adjust
# 'river_erosion_coef' as well.
mapgen_rivers_river_erosion_power (River erosion power) float 0.4 0.0 1.0
# Intensity of diffusive erosion.
# Smoothes peaks and valleys, and tends to prevent sharp cliffs from forming.
mapgen_rivers_diffusive_erosion (Diffusive erosion) float 0.5 0.0 10.0
# Radius of compensation for isostatic/tectonic processes
# Tectonic uplift forces will have a diffuse effect over this radius
mapgen_rivers_compensation_radius (Tectonic compensation radius) float 50 1.0 1000.0
# Speed of evolution of tectonic conditions between steps
# Higher values means tectonics will be very different from one step to the other,
# resulting in geologically unstable and more varied landforms (plateau, gorge, lake...)
mapgen_rivers_tectonic_speed (Tectonic speed) float 70 0 10000
[Noises]
# Y level of terrain at a very large scale. Only used during pre-generation.
# X and Z axes correspond to map's X and Z directions, and Y axis is time.
# Successive XZ slices of this noise represent successive tectonic states.
mapgen_rivers_np_base (Terrain base noise) noise_params_3d 0, 300, (2048, 2048, 2048), 2469, 8, 0.6, 2.0, eased
# This noise will shear the terrain on the X axis,
# to break the regularity of the river grid.
mapgen_rivers_np_distort_x (X-axis distorsion noise) noise_params_3d 0, 1, (64, 32, 64), -4574, 3, 0.75, 2.0
# This noise will shear the terrain on the Z axis,
# to break the regularity of the river grid.
mapgen_rivers_np_distort_z (Z-axis distorsion noise) noise_params_3d 0, 1, (64, 32, 64), -7940, 3, 0.75, 2.0
# Amplitude of the distorsion.
# Too small values may leave the grid pattern apparent,
# and too high values could make the terrain insanely twisted.
mapgen_rivers_np_distort_amplitude (Distorsion amplitude noise) noise_params_2d 0, 10, (1024, 1024, 1024), 676, 5, 0.5, 2.0, absvalue

17
terrain_default.conf Normal file
View File

@ -0,0 +1,17 @@
mapsize = 1000
scale = 400
vscale = 300
offset = 0
persistence = 0.6
lacunarity = 2.0
K = 0.5
m = 0.5
d = 0.5
sea_level = 0
sea_level_variations = 8
sea_level_variations_time = 2
flex_radius = 20
time = 10
niter = 10

17
terrain_higher.conf Normal file
View File

@ -0,0 +1,17 @@
mapsize = 1000
scale = 400
vscale = 600
offset = 0
persistence = 0.65
lacunarity = 2.0
K = 0.5
m = 0.45
d = 0.55
sea_level = 0
sea_level_variations = 12
sea_level_variations_time = 2
flex_radius = 50
time = 10
niter = 10

16
terrain_original.conf Normal file
View File

@ -0,0 +1,16 @@
mapsize = 1000
scale = 400
vscale = 300
offset = 0
persistence = 0.6
lacunarity = 2.0
flow_method = steepest
K = 1
m = 0.35
d = 0
sea_level = 0
flex_radius = 20
time = 10
niter = 10

7
terrainlib/__init__.py Normal file
View File

@ -0,0 +1,7 @@
# Load packages and provide easy access to important functions
from .settings import read_config_file
from .erosion import EvolutionModel
from .save import save
from .bounds import make_bounds, twist, get_fixed
from .view import stats, update, plot

74
terrainlib/bounds.py Normal file
View File

@ -0,0 +1,74 @@
import numpy as np
def make_bounds(dirs, rivers):
"""
Give an array of all horizontal and vertical bounds
"""
(Y, X) = dirs.shape
bounds_h = np.zeros((Y, X-1), dtype=rivers.dtype)
bounds_v = np.zeros((Y-1, X), dtype=rivers.dtype)
bounds_v += (rivers * (dirs==1))[:-1,:]
bounds_h += (rivers * (dirs==2))[:,:-1]
bounds_v -= (rivers * (dirs==3))[1:,:]
bounds_h -= (rivers * (dirs==4))[:,1:]
return bounds_h, bounds_v
def get_fixed(dirs):
"""
Give the list of points that should not be twisted
"""
borders = np.zeros(dirs.shape, dtype='?')
borders[-1,:] |= dirs[-1,:]==1
borders[:,-1] |= dirs[:,-1]==2
borders[0,:] |= dirs[0,:]==3
borders[:,0] |= dirs[:,0]==4
donors = np.zeros(dirs.shape, dtype='?')
donors[1:,:] |= dirs[:-1,:]==1
donors[:,1:] |= dirs[:,:-1]==2
donors[:-1,:] |= dirs[1:,:]==3
donors[:,:-1] |= dirs[:,1:]==4
return borders | ~donors
def twist(bounds_x, bounds_y, fixed, d=0.1, n=5):
"""
Twist the grid (define an offset for every node). Model river bounds as if they were elastics.
Smoothes preferentially big rivers.
"""
moveable = ~fixed
(Y, X) = fixed.shape
offset_x = np.zeros((Y, X))
offset_y = np.zeros((Y, X))
for i in range(n):
force_long = np.abs(bounds_x) * (1+np.diff(offset_x, axis=1))
force_trans = np.abs(bounds_y) * np.diff(offset_x, axis=0)
force_x = np.zeros((Y, X))
force_x[:,:-1] = force_long
force_x[:,1:] -= force_long
force_x[:-1,:]+= force_trans
force_x[1:,:] -= force_trans
force_long = np.abs(bounds_y) * (1+np.diff(offset_y, axis=0))
force_trans = np.abs(bounds_x) * np.diff(offset_y, axis=1)
force_y = np.zeros((Y, X))
force_y[:-1,:] = force_long
force_y[1:,:] -= force_long
force_y[:,:-1]+= force_trans
force_y[:,1:] -= force_trans
length = np.hypot(force_x, force_y)
length[length==0] = 1
coeff = d / length * moveable # Normalize, take into account the direction only
offset_x += force_x * coeff
offset_y += force_y * coeff
return offset_x, offset_y

121
terrainlib/erosion.py Normal file
View File

@ -0,0 +1,121 @@
import numpy as np
import scipy.ndimage as im
import scipy.signal as si
from .rivermapper import flow
def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0):
"""
Simulate erosion by rivers.
This models erosion as an upstream advection of elevations ("erosion waves").
Advection speed depends on water flux and parameters:
v = K * flux^m
"""
adv_time = 1 / (K*rivers**m) # For every pixel, calculate the time an "erosion wave" will need to cross it.
dem = np.maximum(dem, sea_level)
dem_new = np.zeros(dem.shape)
for y in range(dirs.shape[0]):
for x in range(dirs.shape[1]):
# Elevations propagate upstream, so for every pixel we seek the downstream pixel whose erosion wave just reached the current pixel.
# This means summing the advection times downstream until we reach the erosion time.
x0, y0 = x, y
x1, y1 = x, y
remaining = time
while True:
# Move one pixel downstream
flow_dir = dirs[y0,x0]
if flow_dir == 0:
remaining = 0
break
elif flow_dir == 1:
y1 += 1
elif flow_dir == 2:
x1 += 1
elif flow_dir == 3:
y1 -= 1
elif flow_dir == 4:
x1 -= 1
if remaining <= adv_time[y0,x0]: # Time is over, we found it.
break
remaining -= adv_time[y0,x0]
x0, y0 = x1, y1
c = remaining / adv_time[y0,x0]
dem_new[y,x] = c*dem[y1,x1] + (1-c)*dem[y0,x0] # If between 2 pixels, perform linear interpolation.
return dem_new
second_derivative_matrix = np.array([
[0., 0.25, 0.],
[0.25,-1., 0.25],
[0., 0.25, 0.],
])
diff_max = 1.0
def diffusion(dem, time, d=1.0):
if isinstance(d, np.ndarray):
dmax = d.max()
else:
dmax = d
diff = time * dmax
print(diff)
niter = int(diff//diff_max) + 1
ddiff = d * (time / niter)
#print('{:d} iterations'.format(niter))
for i in range(niter):
dem[1:-1,1:-1] += si.convolve2d(dem, second_derivative_matrix, mode='valid') * ddiff
#print('iteration {:d}'.format(i+1))
return dem
#return im.gaussian_filter(dem, radius, mode='reflect') # Diffusive erosion is a simple Gaussian blur
class EvolutionModel:
def __init__(self, dem, K=1, m=0.5, d=1, sea_level=0, flow=False, flex_radius=100, flow_method='semirandom'):
self.dem = dem
#self.bedrock = dem
self.K = K
self.m = m
if isinstance(d, np.ndarray):
self.d = d[1:-1,1:-1]
else:
self.d = d
self.sea_level = sea_level
self.flex_radius = flex_radius
self.define_isostasy()
self.flow_method = flow_method
#set_flow_method(flow_method)
if flow:
self.calculate_flow()
else:
self.lakes = dem
self.dirs = np.zeros(dem.shape, dtype=int)
self.rivers = np.zeros(dem.shape, dtype=int)
self.flow_uptodate = False
def calculate_flow(self):
self.dirs, self.lakes, self.rivers = flow(self.dem, method=self.flow_method)
self.flow_uptodate = True
def advection(self, time):
dem = advection(np.maximum(self.dem, self.lakes), self.dirs, self.rivers, time, K=self.K, m=self.m, sea_level=self.sea_level)
self.dem = np.minimum(dem, self.dem)
self.flow_uptodate = False
def diffusion(self, time):
self.dem = diffusion(self.dem, time, d=self.d)
self.flow_uptodate = False
def define_isostasy(self, dem=None):
if dem is None:
dem = self.dem
self.ref_isostasy = im.gaussian_filter(dem, self.flex_radius, mode='reflect') # Define a blurred version of the DEM that will be considered as the reference isostatic elevation.
def adjust_isostasy(self, rate=1):
isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Calculate blurred DEM
correction = (self.ref_isostasy - isostasy) * rate # Compare it with the reference isostasy
self.dem = self.dem + correction # Adjust

278
terrainlib/rivermapper.py Normal file
View File

@ -0,0 +1,278 @@
import numpy as np
import numpy.random as npr
from collections import defaultdict
# This file provide functions to construct the river tree from an elevation model.
# Based on a research paper:
# | Cordonnier, G., Bovy, B., and Braun, J.:
# | A versatile, linear complexity algorithm for flow routing in topographies with depressions,
# | Earth Surf. Dynam., 7, 549562, https://doi.org/10.5194/esurf-7-549-2019, 2019.
# Big thanks to them for releasing this paper under a free license ! :)
# The algorithm here makes use of most of the paper's concepts, including the Planar Boruvka algorithm.
# Only flow_local and accumulate_flow are custom algorithms.
# Define two different method for local flow routing
def flow_local_steepest(plist):
vmax = 0.0
imax = 0.0
for i, p in enumerate(plist):
if p > vmax:
vmax = p
imax = i
if vmax > 0.0:
return imax+1
return 0
def flow_local_semirandom(plist):
"""
Determines a flow direction based on denivellation for every neighbouring node.
Denivellation must be positive for downward and zero for flat or upward:
dz = max(zref-z, 0)
"""
psum = sum(plist)
if psum == 0:
return 0
r = npr.random() * psum
for i, p in enumerate(plist):
if r < p:
return i+1
r -= p
flow_local_methods = {
'steepest' : flow_local_steepest,
'semirandom' : flow_local_semirandom,
}
def flow(dem, method='semirandom'):
if method in flow_local_methods:
flow_local = flow_local_methods[method]
else:
raise KeyError('Flow method \'{}\' does not exist'.format(method))
# Flow locally
dirs1 = np.zeros(dem.shape, dtype=int)
dirs2 = np.zeros(dem.shape, dtype=int)
(X, Y) = dem.shape
Xmax, Ymax = X-1, Y-1
singular = []
for x in range(X):
z0 = z1 = z2 = dem[x,0]
for y in range(Y):
z0 = z1
z1 = z2
if y < Ymax:
z2 = dem[x, y+1]
plist = [
max(z1-dem[x+1,y],0) if x<Xmax else 0, # 1: x -> x+1
max(z1-z2,0), # 2: y -> y+1
max(z1-dem[x-1,y],0) if x>0 else 0, # 3: x -> x-1
max(z1-z0,0), # 4: y -> y-1
]
pdir = flow_local(plist)
dirs2[x,y] = pdir
if pdir == 0:
singular.append((x,y))
elif pdir == 1:
dirs1[x+1,y] += 1
elif pdir == 2:
dirs1[x,y+1] += 2
elif pdir == 3:
dirs1[x-1,y] += 4
elif pdir == 4:
dirs1[x,y-1] += 8
# Compute basins
basin_id = np.zeros(dem.shape, dtype=int)
stack = []
for i, s in enumerate(singular):
queue = [s]
while queue:
x, y = queue.pop()
basin_id[x,y] = i
d = int(dirs1[x,y])
if d & 1:
queue.append((x-1,y))
if d & 2:
queue.append((x,y-1))
if d & 4:
queue.append((x+1,y))
if d & 8:
queue.append((x,y+1))
del dirs1
# Link basins
nsing = len(singular)
links = {}
def add_link(b0, b1, elev, bound):
b = (min(b0,b1),max(b0,b1))
if b not in links or links[b][0] > elev:
links[b] = (elev, bound)
for x in range(X):
b0 = basin_id[x,0]
add_link(-1, b0, dem[x,0], (True, x, 0))
for y in range(1,Y):
b1 = basin_id[x,y]
if b0 != b1:
add_link(b0, b1, max(dem[x,y-1],dem[x,y]), (True, x, y))
b0 = b1
add_link(-1, b1, dem[x,Ymax], (True, x, Y))
for y in range(Y):
b0 = basin_id[0,y]
add_link(-1, b0, dem[0,y], (False, 0, y))
for x in range(1,X):
b1 = basin_id[x,y]
if b0 != b1:
add_link(b0, b1, max(dem[x-1,y],dem[x,y]), (False, x, y))
b0 = b1
add_link(-1, b1, dem[Xmax,y], (False, X, y))
# Computing basin tree
graph = planar_boruvka(links)
basin_links = defaultdict(dict)
for elev, b1, b2, bound in graph:
basin_links[b1][b2] = basin_links[b2][b1] = (elev, bound)
basins = np.zeros(nsing+1)
stack = [(-1, float('-inf'))]
# Applying basin flowing
dir_reverse = (0, 3, 4, 1, 2)
while stack:
b1, elev1 = stack.pop()
basins[b1] = elev1
for b2, (elev2, bound) in basin_links[b1].items():
stack.append((b2, max(elev1, elev2)))
# Reverse flow direction in b2 (TODO)
isY, x, y = bound
backward = True # Whether water will escape the basin in +X/+Y direction
if not (x < X and y < Y and basin_id[x,y] == b2):
if isY:
y -= 1
else:
x -= 1
backward = False
d = 2*backward + isY + 1
while d > 0:
d, dirs2[x,y] = dirs2[x,y], d
if d == 1:
x += 1
elif d == 2:
y += 1
elif d == 3:
x -= 1
elif d == 4:
y -= 1
d = dir_reverse[d]
del basin_links[b2][b1]
del basin_links[b1]
# Calculating water quantity
dirs2[-1,:][dirs2[-1,:]==1] = 0
dirs2[:,-1][dirs2[:,-1]==2] = 0
dirs2[0,:][dirs2[0,:]==3] = 0
dirs2[:,0][dirs2[:,0]==4] = 0
waterq = accumulate_flow(dirs2)
return dirs2, basins[basin_id], waterq
def accumulate_flow(dirs):
ndonors = np.zeros(dirs.shape, dtype=int)
ndonors[1:,:] += dirs[:-1,:] == 1
ndonors[:,1:] += dirs[:,:-1] == 2
ndonors[:-1,:] += dirs[1:,:] == 3
ndonors[:,:-1] += dirs[:,1:] == 4
waterq = np.ones(dirs.shape, dtype=int)
(X, Y) = dirs.shape
rangeX = range(X)
rangeY = range(Y)
for x in rangeX:
for y in rangeY:
if ndonors[x,y] > 0:
continue
xw, yw = x, y
w = waterq[xw, yw]
while 1:
d = dirs[xw, yw]
if d <= 0:
break
elif d == 1:
xw += 1
elif d == 2:
yw += 1
elif d == 3:
xw -= 1
elif d == 4:
yw -= 1
w += waterq[xw, yw]
waterq[xw, yw] = w
if ndonors[xw, yw] > 1:
ndonors[xw, yw] -= 1
break
return waterq
def planar_boruvka(links):
# Compute basin tree
basin_list = defaultdict(dict)
for (b1, b2), (elev, bound) in links.items():
basin_list[b1][b2] = basin_list[b2][b1] = (elev, b1, b2, bound)
threshold = 8
lowlevel = {}
for k, v in basin_list.items():
if len(v) <= threshold:
lowlevel[k] = v
basin_graph = []
n = len(basin_list)
while n > 1:
(b1, lnk1) = lowlevel.popitem()
b2 = min(lnk1, key=lnk1.get)
lnk2 = basin_list[b2]
# Add link to the graph
basin_graph.append(lnk1[b2])
# Union : merge basin 1 into basin 2
# First, delete the direct link
del lnk1[b2]
del lnk2[b1]
# Look for basin 1's neighbours, and add them to basin 2 if they have a lower pass
for k, v in lnk1.items():
bk = basin_list[k]
if k in lnk2 and lnk2[k] < v:
del bk[b1]
else:
lnk2[k] = v
bk[b2] = bk.pop(b1)
if k not in lowlevel and len(bk) <= threshold:
lowlevel[k] = bk
if b2 in lowlevel:
if len(lnk2) > threshold:
del lowlevel[b2]
elif len(lnk2) <= threshold:
lowlevel[b2] = lnk2
del lnk1
n -= 1
return basin_graph

13
terrainlib/save.py Normal file
View File

@ -0,0 +1,13 @@
import numpy as np
import zlib
def save(data, fname, dtype=None):
if dtype is not None:
data = data.astype(dtype)
bin_data = data.tobytes()
bin_data_comp = zlib.compress(bin_data, 9)
if len(bin_data_comp) < len(bin_data):
bin_data = bin_data_comp
with open(fname, 'wb') as f:
f.write(bin_data)

16
terrainlib/settings.py Normal file
View File

@ -0,0 +1,16 @@
import os.path
def read_config_file(fname):
settings = {}
if not os.path.isfile(fname):
return settings
with open(fname, 'r') as f:
for line in f:
slist = line.split('=', 1)
if len(slist) >= 2:
prefix, suffix = slist
settings[prefix.strip()] = suffix.strip()
return settings

View File

@ -19,7 +19,7 @@ except ImportError: # No module matplotlib
has_matplotlib = False has_matplotlib = False
if has_matplotlib: if has_matplotlib:
def view_map(dem, lakes, scale=1, center=False, sea_level=0.0, title=None): def view_map(dem, lakes, scale=1, sea_level=0.0, title=None):
lakes_sea = np.maximum(lakes, sea_level) lakes_sea = np.maximum(lakes, sea_level)
water = np.maximum(lakes_sea - dem, 0) water = np.maximum(lakes_sea - dem, 0)
max_elev = dem.max() max_elev = dem.max()
@ -31,10 +31,7 @@ if has_matplotlib:
rgb = ls.shade(dem, cmap=cmap1, vert_exag=1/scale, blend_mode='soft', norm=norm_ground) rgb = ls.shade(dem, cmap=cmap1, vert_exag=1/scale, blend_mode='soft', norm=norm_ground)
(X, Y) = dem.shape (X, Y) = dem.shape
if center: extent = (0, Y*scale, 0, X*scale)
extent = (-(Y+1)*scale/2, (Y-1)*scale/2, -(X+1)*scale/2, (X-1)*scale/2)
else:
extent = (-0.5*scale, (Y-0.5)*scale, -0.5*scale, (X-0.5)*scale)
plt.imshow(np.flipud(rgb), extent=extent, interpolation='antialiased') plt.imshow(np.flipud(rgb), extent=extent, interpolation='antialiased')
alpha = (water > 0).astype('u1') alpha = (water > 0).astype('u1')
plt.imshow(np.flipud(water), alpha=np.flipud(alpha), cmap=cmap2, extent=extent, vmin=0, vmax=max_depth, interpolation='antialiased') plt.imshow(np.flipud(water), alpha=np.flipud(alpha), cmap=cmap2, extent=extent, vmin=0, vmax=max_depth, interpolation='antialiased')

View File

@ -1,221 +0,0 @@
-- erosion.lua
local function erode(model, time)
--local tinsert = table.insert
local mmin, mmax = math.min, math.max
local dem = model.dem
local dirs = model.dirs
local lakes = model.lakes
local rivers = model.rivers
local sea_level = model.params.sea_level
local K = model.params.K
local m = model.params.m
local X, Y = dem.X, dem.Y
local scalars = type(K) == "number" and type(m) == "number"
local erosion_time
if model.params.variable_erosion then
erosion_time = {}
else
erosion_time = model.erosion_time or {}
end
if scalars then
for i=1, X*Y do
local etime = 1 / (K*rivers[i]^m)
erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level)
end
else
for i=1, X*Y do
local etime = 1 / (K[i]*rivers[i]^m[i])
erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level)
end
end
for i=1, X*Y do
local iw = i
local remaining = time
local new_elev
while true do
local inext = iw
local d = dirs[iw]
if d == 0 then
new_elev = lakes[iw]
break
elseif d == 1 then
inext = iw+X
elseif d == 2 then
inext = iw+1
elseif d == 3 then
inext = iw-X
elseif d == 4 then
inext = iw-1
end
local etime = erosion_time[iw]
if remaining <= etime then
local c = remaining / etime
new_elev = (1-c) * lakes[iw] + c * lakes[inext]
break
end
remaining = remaining - etime
iw = inext
end
dem[i] = mmin(dem[i], new_elev)
end
end
local function diffuse(model, time)
local mmax = math.max
local dem = model.dem
local X, Y = dem.X, dem.Y
local d = model.params.d
local dmax = d
if type(d) == "table" then
dmax = -math.huge
for i=1, X*Y do
dmax = mmax(dmax, d[i])
end
end
local diff = dmax * time
local niter = math.floor(diff) + 1
local ddiff = diff / niter
local temp = {}
for n=1, niter do
local i = 1
for y=1, Y do
local iN = (y==1) and 0 or -X
local iS = (y==Y) and 0 or X
for x=1, X do
local iW = (x==1) and 0 or -1
local iE = (x==X) and 0 or 1
temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i]
i = i + 1
end
end
for i=1, X*Y do
dem[i] = dem[i] + temp[i]*ddiff
end
end
-- TODO Test this
end
local modpath = ""
if minetest then
if minetest.global_exists('mapgen_rivers') then
modpath = mapgen_rivers.modpath .. "terrainlib_lua/"
else
modpath = minetest.get_modpath(minetest.get_current_modname()) .. "terrainlib_lua/"
end
end
local rivermapper = dofile(modpath .. "rivermapper.lua")
local gaussian = dofile(modpath .. "gaussian.lua")
local function flow(model)
model.dirs, model.lakes = rivermapper.flow_routing(model.dem, model.dirs, model.lakes, 'semirandom')
model.rivers = rivermapper.accumulate(model.dirs, model.rivers)
end
local function uplift(model, time)
local dem = model.dem
local X, Y = dem.X, dem.Y
local uplift_rate = model.params.uplift
if type(uplift_rate) == "number" then
local uplift_total = uplift_rate * time
for i=1, X*Y do
dem[i] = dem[i] + uplift_total
end
else
for i=1, X*Y do
dem[i] = dem[i] + uplift_rate[i]*time
end
end
end
local function noise(model, time)
local random = math.random
local dem = model.dem
local noise_depth = model.params.noise * 2 * time
local X, Y = dem.X, dem.Y
for i=1, X*Y do
dem[i] = dem[i] + (random()-0.5) * noise_depth
end
end
local function define_isostasy(model, ref, link)
ref = ref or model.dem
if link then
model.isostasy_ref = ref
return
end
local X, Y = ref.X, ref.Y
local ref2 = model.isostasy_ref or {X=X, Y=Y}
model.isostasy_ref = ref2
for i=1, X*Y do
ref2[i] = ref[i]
end
return ref2
end
local function isostasy(model)
local dem = model.dem
local X, Y = dem.X, dem.Y
local temp = {X=X, Y=Y}
local ref = model.isostasy_ref
for i=1, X*Y do
temp[i] = ref[i] - dem[i]
end
gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4)
for i=1, X*Y do
dem[i] = dem[i] + temp[i]
end
end
local evol_model_mt = {
erode = erode,
diffuse = diffuse,
flow = flow,
uplift = uplift,
noise = noise,
isostasy = isostasy,
define_isostasy = define_isostasy,
}
evol_model_mt.__index = evol_model_mt
local defaults = {
K = 1,
m = 0.5,
d = 1,
variable_erosion = false,
sea_level = 0,
uplift = 10,
noise = 0.001,
compensation_radius = 50,
}
local function EvolutionModel(params)
params = params or {}
local o = {params = params}
for k, v in pairs(defaults) do
if params[k] == nil then
params[k] = v
end
end
o.dem = params.dem
return setmetatable(o, evol_model_mt)
end
return EvolutionModel

View File

@ -1,102 +0,0 @@
-- gaussian.lua
local function get_box_size(sigma, n)
local v = sigma^2 / n
local r_ideal = ((12*v + 1) ^ 0.5 - 1) / 2
local r_down = math.floor(r_ideal)
local r_up = math.ceil(r_ideal)
local v_down = ((2*r_down+1)^2 - 1) / 12
local v_up = ((2*r_up+1)^2 - 1) / 12
local m_ideal = (v - v_down) / (v_up - v_down) * n
local m = math.floor(m_ideal+0.5)
local sizes = {}
for i=1, n do
sizes[i] = i<=m and 2*r_up+1 or 2*r_down+1
end
return sizes
end
local function box_blur_1d(map, size, first, incr, len, map2)
local n = math.ceil(size/2)
first = first or 1
incr = incr or 1
len = len or math.floor((#map-first)/incr)+1
local last = first + (len-1)*incr
local nth = first+(n-1)*incr
local sum = 0
for i=first, nth, incr do
if i == first then
sum = sum + map[i]
else
sum = sum + 2*map[i]
end
end
local i_left = nth
local incr_left = -incr
local i_right = nth
local incr_right = incr
map2 = map2 or {}
for i=first, last, incr do
map2[i] = sum / size
i_right = i_right + incr_right
sum = sum - map[i_left] + map[i_right]
i_left = i_left + incr_left
if i_left == first then
incr_left = incr
end
if i_right == last then
incr_right = -incr
end
end
return map2
end
local function box_blur_2d(map1, size, map2)
local X, Y = map1.X, map1.Y
map2 = map2 or {}
for y=1, Y do
box_blur_1d(map1, size, (y-1)*X+1, 1, X, map2)
end
for x=1, X do
box_blur_1d(map2, size, x, X, Y, map1)
end
return map1
end
--[[local function gaussian_blur(map, std, tail)
local exp = math.exp
local kernel_mid = math.ceil(std*tail) + 1
local kernel_size = kernel_mid * 2 - 1
local kernel = {}
local cst1 = 1/(std*(2*math.pi)^0.5)
local cst2 = -1/(2*std^2)
for i=1, kernel_size do
kernel[i] = cst1 * exp((i-kernel_mid)^2 * cst2)
end
]]
local function gaussian_blur_approx(map, sigma, n, map2)
map2 = map2 or {}
local sizes = get_box_size(sigma, n)
for i=1, n do
box_blur_2d(map, sizes[i], map2)
end
return map
end
return {
get_box_size = get_box_size,
box_blur_1d = box_blur_1d,
box_blur_2d = box_blur_2d,
gaussian_blur_approx = gaussian_blur_approx,
}

View File

@ -1,373 +0,0 @@
-- rivermapper.lua
local function flow_local_semirandom(plist)
local sum = 0
for i=1, #plist do
sum = sum + plist[i]
end
--for _, p in ipairs(plist) do
--sum = sum + p
--end
if sum == 0 then
return 0
end
local r = math.random() * sum
for i=1, #plist do
local p = plist[i]
--for i, p in ipairs(plist) do
if r < p then
return i
end
r = r - p
end
return 0
end
local flow_methods = {
semirandom = flow_local_semirandom,
}
local function flow_routing(dem, dirs, lakes, method)
method = method or 'semirandom'
local flow_local = flow_methods[method] or flow_local_semirandom
dirs = dirs or {}
lakes = lakes or {}
-- Localize for performance
--local tinsert = table.insert
local tremove = table.remove
local mmax = math.max
local X, Y = dem.X, dem.Y
dirs.X = X
dirs.Y = Y
lakes.X = X
lakes.Y = Y
local i = 1
local dirs2 = {}
for i=1, X*Y do
dirs2[i] = 0
end
local singular = {}
for y=1, Y do
for x=1, X do
local zi = dem[i]
local plist = {
y<Y and mmax(zi-dem[i+X], 0) or 0, -- Southward
x<X and mmax(zi-dem[i+1], 0) or 0, -- Eastward
y>1 and mmax(zi-dem[i-X], 0) or 0, -- Northward
x>1 and mmax(zi-dem[i-1], 0) or 0, -- Westward
}
local d = flow_local(plist)
dirs[i] = d
if d == 0 then
singular[#singular+1] = i
elseif d == 1 then
dirs2[i+X] = dirs2[i+X] + 1
elseif d == 2 then
dirs2[i+1] = dirs2[i+1] + 2
elseif d == 3 then
dirs2[i-X] = dirs2[i-X] + 4
elseif d == 4 then
dirs2[i-1] = dirs2[i-1] + 8
end
i = i + 1
end
end
-- Compute basins and links
local nbasins = #singular
local basin_id = {}
local links = {}
local basin_links
local function add_link(i1, i2, b1, isY)
local b2
if i2 == 0 then
b2 = 0
else
b2 = basin_id[i2]
if b2 == 0 then
return
end
end
if b2 ~= b1 then
local elev = i2 == 0 and dem[i1] or mmax(dem[i1], dem[i2])
local l2 = basin_links[b2]
if not l2 then
l2 = {}
basin_links[b2] = l2
end
if not l2.elev or l2.elev > elev then
l2.elev = elev
l2.i = mmax(i1,i2)
l2.is_y = isY
l2[1] = b2
l2[2] = b1
end
end
end
for i=1, X*Y do
basin_id[i] = 0
end
--for ib, s in ipairs(singular) do
for ib=1, nbasins do
--local s = singular[ib]
local queue = {singular[ib]}
basin_links = {}
links[#links+1] = basin_links
--tinsert(links, basin_links)
while #queue > 0 do
local i = tremove(queue)
basin_id[i] = ib
local d = dirs2[i]
if d >= 8 then -- River coming from East
d = d - 8
queue[#queue+1] = i+1
--tinsert(queue, i+X)
elseif i%X > 0 then
add_link(i, i+1, ib, false)
else
add_link(i, 0, ib, false)
end
if d >= 4 then -- River coming from South
d = d - 4
queue[#queue+1] = i+X
--tinsert(queue, i+1)
elseif i <= X*(Y-1) then
add_link(i, i+X, ib, true)
else
add_link(i, 0, ib, true)
end
if d >= 2 then -- River coming from West
d = d - 2
queue[#queue+1] = i-1
--tinsert(queue, i-X)
elseif i%X ~= 1 then
add_link(i, i-1, ib, false)
else
add_link(i, 0, ib, false)
end
if d >= 1 then -- River coming from North
queue[#queue+1] = i-X
--tinsert(queue, i-1)
elseif i > X then
add_link(i, i-X, ib, true)
else
add_link(i, 0, ib, true)
end
end
end
dirs2 = nil
links[0] = {}
local nlinks = {}
for i=0, nbasins do
nlinks[i] = 0
end
--for ib1, blinks in ipairs(links) do
for ib1=1, #links do
for ib2, link in pairs(links[ib1]) do
if ib2 < ib1 then
links[ib2][ib1] = link
nlinks[ib1] = nlinks[ib1] + 1
nlinks[ib2] = nlinks[ib2] + 1
end
end
end
local lowlevel = {}
for i, n in pairs(nlinks) do
if n <= 8 then
lowlevel[i] = links[i]
end
end
local basin_graph = {}
for n=1, nbasins do
local b1, lnk1 = next(lowlevel)
lowlevel[b1] = nil
local b2
local lowest = math.huge
local lnk1 = links[b1]
local i = 0
for bn, bdata in pairs(lnk1) do
i = i + 1
if bdata.elev < lowest then
lowest = bdata.elev
b2 = bn
end
end
-- Add link to the graph
local bound = lnk1[b2]
local bb1, bb2 = bound[1], bound[2]
if not basin_graph[bb1] then
basin_graph[bb1] = {}
end
if not basin_graph[bb2] then
basin_graph[bb2] = {}
end
basin_graph[bb1][bb2] = bound
basin_graph[bb2][bb1] = bound
-- Merge basin b1 into b2
local lnk2 = links[b2]
-- First, remove the link between b1 and b2
lnk1[b2] = nil
lnk2[b1] = nil
nlinks[b2] = nlinks[b2] - 1
if nlinks[b2] == 8 then
lowlevel[b2] = lnk2
end
-- Look for basin 1's neighbours, and add them to basin 2 if they have a lower pass
for bn, bdata in pairs(lnk1) do
local lnkn = links[bn]
lnkn[b1] = nil
if lnkn[b2] then
nlinks[bn] = nlinks[bn] - 1
if nlinks[bn] == 8 then
lowlevel[bn] = lnkn
end
else
nlinks[b2] = nlinks[b2] + 1
if nlinks[b2] == 9 then
lowlevel[b2] = nil
end
end
if not lnkn[b2] or lnkn[b2].elev > bdata.elev then
lnkn[b2] = bdata
lnk2[bn] = bdata
end
end
end
local queue = {[0] = -math.huge}
local basin_lake = {}
for n=1, nbasins do
basin_lake[n] = 0
end
local reverse = {3, 4, 1, 2, [0]=0}
for n=1, nbasins do
local b1, elev1 = next(queue)
queue[b1] = nil
basin_lake[b1] = elev1
for b2, bound in pairs(basin_graph[b1]) do
-- Make b2 flow into b1
local i = bound.i
local dir = bound.is_y and 3 or 4
if basin_id[i] ~= b2 then
dir = dir - 2
if bound.is_y then
i = i - X
else
i = i - 1
end
elseif b1 == 0 then
dir = 0
end
repeat
dir, dirs[i] = dirs[i], dir
if dir == 1 then
i = i + X
elseif dir == 2 then
i = i + 1
elseif dir == 3 then
i = i - X
elseif dir == 4 then
i = i - 1
end
dir = reverse[dir]
until dir == 0
-- Add b2 into the queue
queue[b2] = mmax(elev1, bound.elev)
basin_graph[b2][b1] = nil
end
basin_graph[b1] = nil
end
for i=1, X*Y do
lakes[i] = basin_lake[basin_id[i]]
end
return dirs, lakes
end
local function accumulate(dirs, waterq)
waterq = waterq or {}
local X, Y = dirs.X, dirs.Y
--local tinsert = table.insert
local ndonors = {}
local waterq = {X=X, Y=Y}
for i=1, X*Y do
ndonors[i] = 0
waterq[i] = 1
end
--for i1, dir in ipairs(dirs) do
for i1=1, X*Y do
local i2
local dir = dirs[i1]
if dir == 1 then
i2 = i1+X
elseif dir == 2 then
i2 = i1+1
elseif dir == 3 then
i2 = i1-X
elseif dir == 4 then
i2 = i1-1
end
if i2 then
ndonors[i2] = ndonors[i2] + 1
end
end
for i1=1, X*Y do
if ndonors[i1] == 0 then
local i2 = i1
local dir = dirs[i2]
local w = waterq[i2]
while dir > 0 do
if dir == 1 then
i2 = i2 + X
elseif dir == 2 then
i2 = i2 + 1
elseif dir == 3 then
i2 = i2 - X
elseif dir == 4 then
i2 = i2 - 1
end
w = w + waterq[i2]
waterq[i2] = w
if ndonors[i2] > 1 then
ndonors[i2] = ndonors[i2] - 1
break
end
dir = dirs[i2]
end
end
end
return waterq
end
return {
flow_routing = flow_routing,
accumulate = accumulate,
flow_methods = flow_methods,
}

View File

@ -1,102 +0,0 @@
-- bounds.lua
local function get_bounds(dirs, rivers)
local X, Y = dirs.X, dirs.Y
local bounds_x = {X=X, Y=Y}
local bounds_y = {X=X, Y=Y}
for i=1, X*Y do
bounds_x[i] = 0
bounds_y[i] = 0
end
for i=1, X*Y do
local dir = dirs[i]
local river = rivers[i]
if dir == 1 then -- South (+Y)
bounds_y[i] = river
elseif dir == 2 then -- East (+X)
bounds_x[i] = river
elseif dir == 3 then -- North (-Y)
bounds_y[i-X] = river
elseif dir == 4 then -- West (-X)
bounds_x[i-1] = river
end
end
return bounds_x, bounds_y
end
local function twist(dirs, rivers, n)
n = n or 5
local X, Y = dirs.X, dirs.Y
local bounds_x, bounds_y = get_bounds(dirs, rivers)
local dn = 0.5 / n
local offset_x = {X=X, Y=Y}
local offset_y = {X=X, Y=Y}
local offset_x_alt = {X=X, Y=Y}
local offset_y_alt = {X=X, Y=Y}
for i=1, X*Y do
offset_x[i] = 0
offset_y[i] = 0
end
for nn=1, n do
local i = 1
for y=1, Y do
for x=1, X do
local ox, oy = offset_x[i], offset_y[i]
if dirs[i] ~= 0 and rivers[i] > 1 then
local sum_fx = 0
local sum_fy = 0
local sum_w = 0
local b
if x < X then
b = bounds_x[i]
sum_fx = sum_fx + b*(offset_x[i+1]+1)
sum_fy = sum_fy + b*offset_y[i+1]
sum_w = sum_w + b
end
if y < Y then
b = bounds_y[i]
sum_fx = sum_fx + b*offset_x[i+X]
sum_fy = sum_fy + b*(offset_y[i+X]+1)
sum_w = sum_w + b
end
if x > 1 then
b = bounds_x[i-1]
sum_fx = sum_fx + b*(offset_x[i-1]-1)
sum_fy = sum_fy + b*offset_y[i-1]
sum_w = sum_w + b
end
if y > 1 then
b = bounds_y[i-X]
sum_fx = sum_fx + b*offset_x[i-X]
sum_fy = sum_fy + b*(offset_y[i-X]-1)
sum_w = sum_w + b
end
local fx, fy = sum_fx/sum_w - ox, sum_fy/sum_w - oy
local fd = (fx*fx+fy*fy) ^ 0.5
if fd > dn then
local c = dn/fd
fx, fy = fx*c, fy*c
end
offset_x_alt[i] = ox+fx
offset_y_alt[i] = oy+fy
else
offset_x_alt[i] = ox
offset_y_alt[i] = oy
end
i = i + 1
end
end
offset_x, offset_x_alt = offset_x_alt, offset_x
offset_y, offset_y_alt = offset_y_alt, offset_y
end
return offset_x, offset_y
end
return twist

View File

@ -5,20 +5,13 @@ import zlib
import sys import sys
import os import os
from view import stats, plot from terrainlib import stats, plot
from readconfig import read_conf_file
scale = 1
if len(sys.argv) > 1:
os.chdir(sys.argv[1]) os.chdir(sys.argv[1])
conf = read_conf_file('mapgen_rivers.conf') if len(sys.argv) > 2:
if 'center' in conf: scale = int(sys.argv[2])
center = conf['center'] == 'true'
else:
center = True
if 'blocksize' in conf:
blocksize = float(conf['blocksize'])
else:
blocksize = 15.0
def load_map(name, dtype, shape): def load_map(name, dtype, shape):
dtype = np.dtype(dtype) dtype = np.dtype(dtype)
@ -28,10 +21,9 @@ def load_map(name, dtype, shape):
data = zlib.decompress(data) data = zlib.decompress(data)
return np.frombuffer(data, dtype=dtype).reshape(shape) return np.frombuffer(data, dtype=dtype).reshape(shape)
shape = np.loadtxt('river_data/size', dtype='u4') shape = np.loadtxt('size', dtype='u4')
shape = (shape[1], shape[0]) dem = load_map('dem', '>i2', shape)
dem = load_map('river_data/dem', '>i2', shape) lakes = load_map('lakes', '>i2', shape)
lakes = load_map('river_data/lakes', '>i2', shape)
stats(dem, lakes, scale=blocksize) stats(dem, lakes, scale=scale)
plot(dem, lakes, scale=blocksize, center=center) plot(dem, lakes, scale=scale)