local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/' local worldpath = minetest.get_worldpath() .. '/' local load_map = dofile(modpath .. 'load.lua') local geometry = dofile(modpath .. 'geometry.lua') local function copy_if_needed(filename) local wfilename = worldpath..filename local wfile = io.open(wfilename, 'r') if wfile then wfile:close() return end local mfilename = modpath..filename local mfile = io.open(mfilename, 'r') local wfile = io.open(wfilename, 'w') wfile:write(mfile:read("*all")) mfile:close() wfile:close() end copy_if_needed('size') local sfile = io.open(worldpath..'size') local X = tonumber(sfile:read('*l')) local Z = tonumber(sfile:read('*l')) copy_if_needed('dem') local dem = load_map(worldpath..'dem', 2, true, X*Z) copy_if_needed('lakes') local lakes = load_map(worldpath..'lakes', 2, true, X*Z) copy_if_needed('bounds_x') local bounds_x = load_map(worldpath..'bounds_x', 4, false, (X-1)*Z) copy_if_needed('bounds_y') local bounds_z = load_map(worldpath..'bounds_y', 4, false, X*(Z-1)) copy_if_needed('offset_x') local offset_x = load_map(worldpath..'offset_x', 1, true, X*Z) for k, v in ipairs(offset_x) do offset_x[k] = (v+0.5)/256 end copy_if_needed('offset_y') local offset_z = load_map(worldpath..'offset_y', 1, true, X*Z) for k, v in ipairs(offset_z) do offset_z[k] = (v+0.5)/256 end local function index(x, z) return z*X+x+1 end local function interp(v00, v01, v11, v10, xf, zf) local v0 = v01*xf + v00*(1-xf) local v1 = v11*xf + v10*(1-xf) return v1*zf + v0*(1-zf) end local data = {} local blocksize = 12 local sea_level = 1 local min_catchment = 25 local max_catchment = 40000 local riverbed_slope = 0.4 local get_settings = dofile(modpath .. 'settings.lua') blocksize = get_settings('blocksize', 'int', blocksize) sea_level = get_settings('sea_level', 'int', sea_level) min_catchment = get_settings('min_catchment', 'float', min_catchment) max_catchment = get_settings('max_catchment', 'float', max_catchment) riverbed_slope = get_settings('riverbed_slope', 'float', riverbed_slope) * blocksize -- Width coefficients: coefficients solving -- wfactor * min_catchment ^ wpower = 1/(2*blocksize) -- wfactor * max_catchment ^ wpower = 1 local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment) local wfactor = 1 / max_catchment ^ wpower local function river_width(flow) flow = math.abs(flow) if flow < min_catchment then return 0 end return math.min(wfactor * flow ^ wpower, 1) end local function generate(minp, maxp, seed) local c_stone = minetest.get_content_id("default:stone") local c_dirt = minetest.get_content_id("default:dirt") local c_lawn = minetest.get_content_id("default:dirt_with_grass") local c_sand = minetest.get_content_id("default:sand") local c_water = minetest.get_content_id("default:water_source") local c_rwater = minetest.get_content_id("default:river_water_source") local vm, emin, emax = minetest.get_mapgen_object("voxelmanip") vm:get_data(data) local a = VoxelArea:new({MinEdge = emin, MaxEdge = emax}) local ystride = a.ystride -- Tip : the ystride of a VoxelArea is the number to add to the array index to get the index of the position above. It's faster because it avoids to completely recalculate the index. local chulens = maxp.z - minp.z + 1 local polygons = {} local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2) local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2) for xp = xpmin, xpmax do for zp=zpmin, zpmax do local iA = index(xp, zp) local iB = index(xp+1, zp) local iC = index(xp+1, zp+1) local iD = index(xp, zp+1) local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp} local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1} local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}} local bounds = {} local xmin = math.max(math.floor(blocksize*math.min(unpack(poly_x)))+1, minp.x) local xmax = math.min(math.floor(blocksize*math.max(unpack(poly_x))), maxp.x) for x=xmin, xmax do bounds[x] = {} end local i1 = 4 for i2=1, 4 do -- Loop on 4 edges local x1, x2 = poly_x[i1], poly_x[i2] local lxmin = math.floor(blocksize*math.min(x1, x2))+1 local lxmax = math.floor(blocksize*math.max(x1, x2)) if lxmin <= lxmax then local z1, z2 = poly_z[i1], poly_z[i2] local a = (z1-z2) / (x1-x2) local b = blocksize*(z1 - a*x1) for x=math.max(lxmin, minp.x), math.min(lxmax, maxp.x) do table.insert(bounds[x], a*x+b) end end i1 = i2 end for x=xmin, xmax do local xlist = bounds[x] table.sort(xlist) local c = math.floor(#xlist/2) for l=1, c do local zmin = math.max(math.floor(xlist[l*2-1])+1, minp.z) local zmax = math.min(math.floor(xlist[l*2]), maxp.z) local i = (x-minp.x) * chulens + (zmin-minp.z) + 1 for z=zmin, zmax do polygons[i] = polygon i = i + 1 end end end polygon.dem = {dem[iA], dem[iB], dem[iC], dem[iD]} polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD]) local river_west = river_width(bounds_z[iA]) local river_north = river_width(bounds_x[iA-zp]) local river_east = 1-river_width(bounds_z[iB]) local river_south = 1-river_width(bounds_x[iD-zp-1]) if river_west > river_east then local mean = (river_west + river_east) / 2 river_west = mean river_east = mean end if river_north > river_south then local mean = (river_north + river_south) / 2 river_north = mean river_south = mean end polygon.rivers = {river_west, river_north, river_east, river_south} local around = {0,0,0,0,0,0,0,0} if zp > 0 then around[1] = river_width(bounds_z[iA-X]) around[2] = river_width(bounds_z[iB-X]) end if xp < X-2 then around[3] = river_width(bounds_x[iB-zp]) around[4] = river_width(bounds_x[iC-zp-1]) end if zp < Z-2 then around[5] = river_width(bounds_z[iC]) around[6] = river_width(bounds_z[iD]) end if xp > 0 then around[7] = river_width(bounds_x[iD-zp-2]) around[8] = river_width(bounds_x[iA-zp-1]) end polygon.river_corners = {math.max(around[8], around[1]), math.max(around[2], around[3]), math.max(around[4], around[5]), math.max(around[6], around[7])} end end local i = 1 for x = minp.x, maxp.x do for z = minp.z, maxp.z do local poly = polygons[i] if poly then local xf, zf = geometry.transform_quadri(poly.x, poly.z, x/blocksize, z/blocksize) local i00, i01, i11, i10 = unpack(poly.i) local is_river = false local depth_factor = 0 local r_west, r_north, r_east, r_south = unpack(poly.rivers) if xf >= r_east then is_river = true depth_factor = xf-r_east xf = 1 elseif xf <= r_west then is_river = true depth_factor = r_west-xf xf = 0 end if zf >= r_south then is_river = true depth_factor = zf-r_south zf = 1 elseif zf <= r_north then is_river = true depth_factor = r_north-zf zf = 0 end if not is_river then local c_NW, c_NE, c_SE, c_SW = unpack(poly.river_corners) if xf+zf <= c_NW then is_river = true depth_factor = c_NW-xf-zf xf, zf = 0, 0 elseif 1-xf+zf <= c_NE then is_river = true depth_factor = c_NE-1+xf-zf xf, zf = 1, 0 elseif 2-xf-zf <= c_SE then is_river = true depth_factor = c_SE-2+xf+zf xf, zf = 1, 1 elseif xf+1-zf <= c_SW then is_river = true depth_factor = c_SW-xf-1+zf xf, zf = 0, 1 end end if not is_river then xf = (xf-r_west) / (r_east-r_west) zf = (zf-r_north) / (r_south-r_north) end local vdem = poly.dem local terrain_height = math.floor(0.5+interp( vdem[1], vdem[2], vdem[3], vdem[4], xf, zf )) local lake_height = math.max(math.floor(poly.lake), terrain_height) if is_river then terrain_height = math.min(math.max(lake_height, sea_level) - math.floor(1+depth_factor*riverbed_slope), terrain_height) end local is_lake = lake_height > terrain_height local ivm = a:index(x, minp.y-1, z) if terrain_height >= minp.y then for y=minp.y, math.min(maxp.y, terrain_height) do if y == terrain_height then if is_lake or y <= sea_level then data[ivm] = c_sand else data[ivm] = c_lawn end else data[ivm] = c_stone end ivm = ivm + ystride end end if lake_height > sea_level then if is_lake and lake_height > minp.y then for y=math.max(minp.y, terrain_height+1), math.min(maxp.y, lake_height) do data[ivm] = c_rwater ivm = ivm + ystride end end else for y=math.max(minp.y, terrain_height+1), math.min(maxp.y, sea_level) do data[ivm] = c_water ivm = ivm + ystride end end end i = i + 1 end end vm:set_data(data) minetest.generate_ores(vm, minp, maxp) vm:set_lighting({day = 0, night = 0}) vm:calc_lighting() vm:update_liquids() vm:write_to_map() end minetest.register_on_generated(generate)