local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/' local worldpath = minetest.get_worldpath() .. '/' local load_map = dofile(modpath .. 'load.lua') local function copy_if_needed(filename) local wfilename = worldpath..filename local wfile = io.open(wfilename, 'r') if wfile then wfile:close() return end local mfilename = modpath..filename local mfile = io.open(mfilename, 'r') local wfile = io.open(wfilename, 'w') wfile:write(mfile:read("*all")) mfile:close() wfile:close() end copy_if_needed('size') local sfile = io.open(worldpath..'size') local X = tonumber(sfile:read('*l')) local Z = tonumber(sfile:read('*l')) sfile:close() copy_if_needed('dem') local dem = load_map('dem', 2, true, X*Z) copy_if_needed('lakes') local lakes = load_map('lakes', 2, true, X*Z) copy_if_needed('bounds_x') local bounds_x = load_map('bounds_x', 4, false, (X-1)*Z) copy_if_needed('bounds_y') local bounds_z = load_map('bounds_y', 4, false, X*(Z-1)) copy_if_needed('offset_x') local offset_x = load_map('offset_x', 1, true, X*Z) for k, v in ipairs(offset_x) do offset_x[k] = (v+0.5)/256 end copy_if_needed('offset_y') local offset_z = load_map('offset_y', 1, true, X*Z) for k, v in ipairs(offset_z) do offset_z[k] = (v+0.5)/256 end -- To index a flat array representing a 2D map local function index(x, z) return z*X+x+1 end local blocksize = mapgen_rivers.blocksize local min_catchment = mapgen_rivers.min_catchment local max_catchment = mapgen_rivers.max_catchment -- Width coefficients: coefficients solving -- wfactor * min_catchment ^ wpower = 1/(2*blocksize) -- wfactor * max_catchment ^ wpower = 1 local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment) local wfactor = 1 / max_catchment ^ wpower local function river_width(flow) flow = math.abs(flow) if flow < min_catchment then return 0 end return math.min(wfactor * flow ^ wpower, 1) end -- On map generation, determine into which polygon every point (in 2D) will fall. -- Also store polygon-specific data local function make_polygons(minp, maxp) local chulens = maxp.z - minp.z + 1 local polygons = {} -- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize. local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2) local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2) -- Iterate over the polygons for xp = xpmin, xpmax do for zp=zpmin, zpmax do local iA = index(xp, zp) local iB = index(xp+1, zp) local iC = index(xp+1, zp+1) local iD = index(xp, zp+1) -- Extract the vertices of the polygon local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp} local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1} local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}} local bounds = {} -- Will be a list of the intercepts of polygon edges for every X position (scanline algorithm) -- Calculate the min and max X positions local xmin = math.max(math.floor(blocksize*math.min(unpack(poly_x)))+1, minp.x) local xmax = math.min(math.floor(blocksize*math.max(unpack(poly_x))), maxp.x) -- And initialize the arrays for x=xmin, xmax do bounds[x] = {} end local i1 = 4 for i2=1, 4 do -- Loop on 4 edges local x1, x2 = poly_x[i1], poly_x[i2] -- Calculate the integer X positions over which this edge spans local lxmin = math.floor(blocksize*math.min(x1, x2))+1 local lxmax = math.floor(blocksize*math.max(x1, x2)) if lxmin <= lxmax then -- If there is at least one position in it local z1, z2 = poly_z[i1], poly_z[i2] -- Calculate coefficient of the equation defining the edge: Z=aX+b local a = (z1-z2) / (x1-x2) local b = blocksize*(z1 - a*x1) for x=math.max(lxmin, minp.x), math.min(lxmax, maxp.x) do -- For every X position involved, add the intercepted Z position in the table table.insert(bounds[x], a*x+b) end end i1 = i2 end for x=xmin, xmax do -- Now sort the bounds list local xlist = bounds[x] table.sort(xlist) local c = math.floor(#xlist/2) for l=1, c do -- Take pairs of Z coordinates: all positions between them belong to the polygon. local zmin = math.max(math.floor(xlist[l*2-1])+1, minp.z) local zmax = math.min(math.floor(xlist[l*2]), maxp.z) local i = (x-minp.x) * chulens + (zmin-minp.z) + 1 for z=zmin, zmax do -- Fill the map at these places polygons[i] = polygon i = i + 1 end end end polygon.dem = {dem[iA], dem[iB], dem[iC], dem[iD]} polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD]) -- Now, rivers. -- Start by finding the river width (if any) for the polygon's 4 edges. local river_west = river_width(bounds_z[iA]) local river_north = river_width(bounds_x[iA-zp]) local river_east = 1-river_width(bounds_z[iB]) local river_south = 1-river_width(bounds_x[iD-zp-1]) -- Only if opposite rivers overlap (should be rare) if river_west > river_east then local mean = (river_west + river_east) / 2 river_west = mean river_east = mean end if river_north > river_south then local mean = (river_north + river_south) / 2 river_north = mean river_south = mean end polygon.rivers = {river_west, river_north, river_east, river_south} -- Look for river corners local around = {0,0,0,0,0,0,0,0} if zp > 0 then around[1] = river_width(bounds_z[iA-X]) around[2] = river_width(bounds_z[iB-X]) end if xp < X-2 then around[3] = river_width(bounds_x[iB-zp]) around[4] = river_width(bounds_x[iC-zp-1]) end if zp < Z-2 then around[5] = river_width(bounds_z[iC]) around[6] = river_width(bounds_z[iD]) end if xp > 0 then around[7] = river_width(bounds_x[iD-zp-2]) around[8] = river_width(bounds_x[iA-zp-1]) end polygon.river_corners = {math.max(around[8], around[1]), math.max(around[2], around[3]), math.max(around[4], around[5]), math.max(around[6], around[7])} end end return polygons end return make_polygons