local X = mapgen_rivers.grid.size.x local Z = mapgen_rivers.grid.size.y local function index(x, z) return z*X+x+1 end local settings = mapgen_rivers.settings local blocksize = tonumber(settings:get('blocksize')) local min_catchment = tonumber(settings:get('min_catchment')) local max_catchment = tonumber(settings:get('max_catchment')) local map_offset = {x=0, z=0} if settings:get_bool('center') then map_offset.x = blocksize*X/2 map_offset.z = blocksize*Z/2 end -- Localize for performance local floor, ceil, min, max, abs = math.floor, math.ceil, math.min, math.max, math.abs min_catchment = min_catchment / (blocksize*blocksize) local wpower = settings:get('river_widening_power') local wfactor = 1/(2*blocksize * min_catchment^wpower) local function river_width(flow) flow = abs(flow) if flow < min_catchment then return 0 end return min(wfactor * flow ^ wpower, 1) end local noise_heat -- Need a large-scale noise here so no heat blend local elevation_chill = settings:get_bool('elevation_chill') local function get_temperature(x, y, z) local pos = {x=x, y=z} return noise_heat:get2d(pos) - y*elevation_chill end local glaciers = settings:get_bool('glaciers') local glacier_factor = tonumber(settings:get('glacier_factor') local init = false -- On map generation, determine into which polygon every point (in 2D) will fall. -- Also store polygon-specific data local function make_polygons(minp, maxp) local grid = mapgen_rivers.grid local dem = grid.dem local lakes = grid.lakes local dirs = grid.dirs local rivers = grid.rivers local offset_x = grid.offset_x local offset_z = grid.offset_y if not init then if glaciers then noise_heat = minetest.get_perlin(mapgen_rivers.noise_params.heat) end init = true end local chulens = maxp.x - minp.x + 1 local polygons = {} -- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize. local xpmin, xpmax = max(floor((minp.x+map_offset.x)/blocksize - 0.5), 0), min(ceil((maxp.x+map_offset.x)/blocksize + 0.5), X-2) local zpmin, zpmax = max(floor((minp.z+map_offset.z)/blocksize - 0.5), 0), min(ceil((maxp.z+map_offset.z)/blocksize + 0.5), Z-2) -- Iterate over the polygons for xp = xpmin, xpmax do for zp=zpmin, zpmax do local iA = index(xp, zp) local iB = index(xp+1, zp) local iC = index(xp+1, zp+1) local iD = index(xp, zp+1) -- Extract the vertices of the polygon local poly_x = { (offset_x[iA]+xp) * blocksize - map_offset.x, (offset_x[iB]+xp+1) * blocksize - map_offset.x, (offset_x[iC]+xp+1) * blocksize - map_offset.x, (offset_x[iD]+xp) * blocksize - map_offset.x, } local poly_z = { (offset_z[iA]+zp) * blocksize - map_offset.z, (offset_z[iB]+zp) * blocksize - map_offset.z, (offset_z[iC]+zp+1) * blocksize - map_offset.z, (offset_z[iD]+zp+1) * blocksize - map_offset.z, } local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}} local bounds = {} -- Will be a list of the intercepts of polygon edges for every Z position (scanline algorithm) -- Calculate the min and max Z positions local zmin = max(floor(min(unpack(poly_z)))+1, minp.z) local zmax = min(floor(max(unpack(poly_z))), maxp.z) -- And initialize the arrays for z=zmin, zmax do bounds[z] = {} end local i1 = 4 for i2=1, 4 do -- Loop on 4 edges local z1, z2 = poly_z[i1], poly_z[i2] -- Calculate the integer Z positions over which this edge spans local lzmin = floor(min(z1, z2))+1 local lzmax = floor(max(z1, z2)) if lzmin <= lzmax then -- If there is at least one position in it local x1, x2 = poly_x[i1], poly_x[i2] -- Calculate coefficient of the equation defining the edge: X=aZ+b local a = (x1-x2) / (z1-z2) local b = (x1 - a*z1) for z=max(lzmin, minp.z), min(lzmax, maxp.z) do -- For every Z position involved, add the intercepted X position in the table table.insert(bounds[z], a*z+b) end end i1 = i2 end for z=zmin, zmax do -- Now sort the bounds list local zlist = bounds[z] table.sort(zlist) local c = floor(#zlist/2) for l=1, c do -- Take pairs of X coordinates: all positions between them belong to the polygon. local xmin = max(floor(zlist[l*2-1])+1, minp.x) local xmax = min(floor(zlist[l*2]), maxp.x) local i = (z-minp.z) * chulens + (xmin-minp.x) + 1 for x=xmin, xmax do -- Fill the map at these places polygons[i] = polygon i = i + 1 end end end local poly_dem = {dem[iA], dem[iB], dem[iC], dem[iD]} polygon.dem = poly_dem polygon.lake = {lakes[iA], lakes[iB], lakes[iC], lakes[iD]} -- Now, rivers. -- Load river flux values for the 4 corners local riverA = river_width(rivers[iA]) local riverB = river_width(rivers[iB]) local riverC = river_width(rivers[iC]) local riverD = river_width(rivers[iD]) if glaciers then -- Widen the river if get_temperature(poly_x[1], poly_dem[1], poly_z[1]) < 0 then riverA = min(riverA*glacier_factor, 1) end if get_temperature(poly_x[2], poly_dem[2], poly_z[2]) < 0 then riverB = min(riverB*glacier_factor, 1) end if get_temperature(poly_x[3], poly_dem[3], poly_z[3]) < 0 then riverC = min(riverC*glacier_factor, 1) end if get_temperature(poly_x[4], poly_dem[4], poly_z[4]) < 0 then riverD = min(riverD*glacier_factor, 1) end end polygon.river_corners = {riverA, 1-riverB, 2-riverC, 1-riverD} -- Flow directions local dirA, dirB, dirC, dirD = dirs[iA], dirs[iB], dirs[iC], dirs[iD] -- Determine the river flux on the edges, by testing dirs values local river_west = (dirA==1 and riverA or 0) + (dirD==3 and riverD or 0) local river_north = (dirA==2 and riverA or 0) + (dirB==4 and riverB or 0) local river_east = 1 - (dirB==1 and riverB or 0) - (dirC==3 and riverC or 0) local river_south = 1 - (dirD==2 and riverD or 0) - (dirC==4 and riverC or 0) polygon.rivers = {river_west, river_north, river_east, river_south} end end return polygons end return make_polygons