import numpy as np import scipy.ndimage as im from .rivermapper import flow def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0): """ Simulate erosion by rivers. This models erosion as an upstream advection of elevations ("erosion waves"). Advection speed depends on water flux and parameters: v = K * flux^m """ adv_time = 1 / (K*rivers**m) # For every pixel, calculate the time an "erosion wave" will need to cross it. dem = np.maximum(dem, sea_level) dem_new = np.zeros(dem.shape) for y in range(dirs.shape[0]): for x in range(dirs.shape[1]): # Elevations propagate upstream, so for every pixel we seek the downstream pixel whose erosion wave just reached the current pixel. # This means summing the advection times downstream until we reach the erosion time. x0, y0 = x, y x1, y1 = x, y remaining = time while True: # Move one pixel downstream flow_dir = dirs[y0,x0] if flow_dir == 0: remaining = 0 break elif flow_dir == 1: y1 += 1 elif flow_dir == 2: x1 += 1 elif flow_dir == 3: y1 -= 1 elif flow_dir == 4: x1 -= 1 if remaining <= adv_time[y0,x0]: # Time is over, we found it. break remaining -= adv_time[y0,x0] x0, y0 = x1, y1 c = remaining / adv_time[y0,x0] dem_new[y,x] = c*dem[y1,x1] + (1-c)*dem[y0,x0] # If between 2 pixels, perform linear interpolation. return dem_new def diffusion(dem, time, d=1): radius = d * time**.5 if radius == 0: return dem return im.gaussian_filter(dem, radius, mode='reflect') # Diffusive erosion is a simple Gaussian blur class EvolutionModel: def __init__(self, dem, K=1, m=0.5, d=1, sea_level=0, flow=False, flex_radius=100): self.dem = dem #self.bedrock = dem self.K = K self.m = m self.d = d self.sea_level = sea_level self.flex_radius = flex_radius self.define_isostasy() if flow: self.calculate_flow() else: self.lakes = dem self.dirs = np.zeros(dem.shape, dtype=int) self.rivers = np.zeros(dem.shape, dtype=int) self.flow_uptodate = False def calculate_flow(self): self.dirs, self.lakes, self.rivers = flow(self.dem) self.flow_uptodate = True def advection(self, time): dem = advection(np.maximum(self.dem, self.lakes), self.dirs, self.rivers, time, K=self.K, m=self.m, sea_level=self.sea_level) self.dem = np.minimum(dem, self.dem) self.flow_uptodate = False def diffusion(self, time): self.dem = diffusion(self.dem, time, d=self.d) self.flow_uptodate = False def define_isostasy(self): self.ref_isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Define a blurred version of the DEM that will be considered as the reference isostatic elevation. def adjust_isostasy(self, rate=1): isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Calculate blurred DEM correction = (self.ref_isostasy - isostasy) * rate # Compare it with the reference isostasy self.dem = self.dem + correction # Adjust