#!/usr/bin/env python3 import numpy as np import noise import os import sys import terrainlib ### PARSE COMMAND-LINE ARGUMENTS argc = len(sys.argv) config_file = 'terrain.conf' output_dir = 'river_data' params_from_args = {} i = 1 # Index of arguments j = 1 # Number of 'orphan' arguments (the ones that are not preceded by '--something') while i < argc: arg = sys.argv[i] if arg[:2] == '--': pname = arg[2:] v = None split = pname.split('=', maxsplit=1) if len(split) == 2: pname, v = split i += 1 elif i+1 < argc: v = sys.argv[i+1] i += 2 if v is not None: if pname == 'config': config_file = v elif pname == 'output': output_dir = v else: params_from_args[pname] = v else: if j == 1: config_file = arg elif j == 2: output_dir = arg i += 1 j += 1 print(config_file, output_dir) params = terrainlib.read_config_file(config_file) params.update(params_from_args) # Params given from args prevail against conf file ### READ SETTINGS def get_setting(name, default): if name in params: return params[name] return default mapsize = int(get_setting('mapsize', 1000)) scale = float(get_setting('scale', 400.0)) vscale = float(get_setting('vscale', 300.0)) offset = float(get_setting('offset', 0.0)) persistence = float(get_setting('persistence', 0.6)) lacunarity = float(get_setting('lacunarity', 2.0)) K = float(get_setting('K', 1.0)) m = float(get_setting('m', 0.35)) d = float(get_setting('d', 0.2)) sea_level = float(get_setting('sea_level', 0.0)) flex_radius = float(get_setting('flex_radius', 20.0)) time = float(get_setting('time', 10.0)) niter = int(get_setting('niter', 10)) ### MAKE INITIAL TOPOGRAPHY n = np.zeros((mapsize+1, mapsize+1)) # Set noise parameters params = { "octaves" : int(np.ceil(np.log2(mapsize)))+1, "persistence" : persistence, "lacunarity" : lacunarity, } # Determine noise offset randomly xbase = np.random.randint(65536) ybase = np.random.randint(65536) # Generate the noise for x in range(mapsize+1): for y in range(mapsize+1): n[x,y] = noise.snoise2(x/scale + xbase, y/scale + ybase, **params) nn = n*vscale + offset ### COMPUTE LANDSCAPE EVOLUTION # Initialize landscape evolution model print('Initializing model') model = terrainlib.EvolutionModel(nn, K=1, m=0.35, d=1, sea_level=0, flex_radius=flex_radius) terrainlib.update(model.dem, model.lakes, t=5, title='Initializing...') dt = time/niter # Run the model's processes: the order in which the processes are run is arbitrary and could be changed. print('Initial flow calculation') model.calculate_flow() for i in range(niter): disp_niter = 'Iteration {:d} of {:d}...'.format(i+1, niter) terrainlib.update(model.dem, model.lakes, title=disp_niter) print(disp_niter) print('Diffusion') model.diffusion(dt) print('Advection') model.advection(dt) print('Isostatic equilibration') model.adjust_isostasy() print('Flow calculation') model.calculate_flow() print('Done!') # Twist the grid bx, by = terrainlib.make_bounds(model.dirs, model.rivers) offset_x, offset_y = terrainlib.twist(bx, by, terrainlib.get_fixed(model.dirs)) # Convert offset in 8-bits offset_x = np.clip(np.floor(offset_x * 256), -128, 127) offset_y = np.clip(np.floor(offset_y * 256), -128, 127) ### SAVE OUTPUT if not os.path.isdir(output_dir): os.mkdir(output_dir) os.chdir(output_dir) # Save the files terrainlib.save(model.dem, 'dem', dtype='>i2') terrainlib.save(model.lakes, 'lakes', dtype='>i2') terrainlib.save(offset_x, 'offset_x', dtype='i1') terrainlib.save(offset_y, 'offset_y', dtype='i1') terrainlib.save(model.dirs, 'dirs', dtype='u1') terrainlib.save(model.rivers, 'rivers', dtype='>u4') with open('size', 'w') as sfile: sfile.write('{:d}\n{:d}'.format(mapsize+1, mapsize+1)) terrainlib.stats(model.dem, model.lakes) print() print('Grid is ready for use!') terrainlib.plot(model.dem, model.lakes, title='Final grid, ready for use!')