mapgen_rivers/terrainlib_lua/erosion.lua
Gaël C 0bc100030c terrainlib_lua: Hardcode flow_local for performance
as it is unlikely that it will be changed one day.
This results in a drastic performance improvement (x4 speed for step 1)
2024-01-22 00:30:07 +01:00

245 lines
7.2 KiB
Lua
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- erosion.lua
-- This is the main file of terrainlib_lua. It registers the EvolutionModel object and some of the
local function erode(model, time)
-- Apply river erosion on the model
-- Erosion model is based on the simplified version of the stream-power law Ey = K×A^m×S
-- where Ey is the vertical erosion speed, A catchment area of the river, S slope along the river, m and K local constants.
-- It is equivalent to considering a horizontal erosion wave travelling at Ex = K×A^m, and this latter approach allows much greather time steps so it is used here.
-- For each point, instead of moving upstream and see what point the erosion wave would reach, we move downstream and see from which point the erosion wave would reach the given point, then we can set the elevation.
local mmin, mmax = math.min, math.max
local dem = model.dem
local dirs = model.dirs
local lakes = model.lakes
local rivers = model.rivers
local sea_level = model.params.sea_level
local K = model.params.K
local m = model.params.m
local X, Y = dem.X, dem.Y
local scalars = type(K) == "number" and type(m) == "number"
local erosion_time
if model.params.variable_erosion then
erosion_time = {}
else
erosion_time = model.erosion_time or {}
end
if scalars then
for i=1, X*Y do
local etime = 1 / (K*rivers[i]^m) -- Inverse of erosion speed (Ex); time needed for the erosion wave to move through the river section.
erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level) -- Use lake/sea surface if higher than ground level, because rivers can not erode below.
end
else
for i=1, X*Y do
local etime = 1 / (K[i]*rivers[i]^m[i])
erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level)
end
end
for i=1, X*Y do
local iw = i
local remaining = time
local new_elev
while true do
-- Explore downstream until we find the point 'iw' from which the erosion wave will reach 'i'
local inext = iw
local d = dirs[iw]
-- Follow the river downstream (move 'iw')
if d == 0 then -- If no flow direction, we reach the border of the map: set elevation to the latest node's elev and abort.
new_elev = lakes[iw]
break
elseif d == 1 then
inext = iw+X
elseif d == 2 then
inext = iw+1
elseif d == 3 then
inext = iw-X
elseif d == 4 then
inext = iw-1
end
local etime = erosion_time[iw]
if remaining <= etime then -- We have found the node from which the erosion wave will take 'time' to arrive to 'i'.
local c = remaining / etime
new_elev = (1-c) * lakes[iw] + c * lakes[inext] -- Interpolate linearly between the two nodes
break
end
remaining = remaining - etime -- If we still don't reach the target time, decrement time and move to next point.
iw = inext
end
dem[i] = mmin(dem[i], new_elev)
end
end
local function diffuse(model, time)
-- Apply diffusion using finite differences methods
-- Adapted for small radiuses
local mmax = math.max
local dem = model.dem
local X, Y = dem.X, dem.Y
local d = model.params.d
-- 'd' is equal to 4 times the diffusion coefficient
local dmax = d
if type(d) == "table" then
dmax = -math.huge
for i=1, X*Y do
dmax = mmax(dmax, d[i])
end
end
local diff = dmax * time
-- diff should never exceed 1 per iteration.
-- If needed, we will divide the process in enough iterations so that 'ddiff' is below 1.
local niter = math.floor(diff) + 1
local ddiff = diff / niter
local temp = {}
for n=1, niter do
local i = 1
for y=1, Y do
local iN = (y==1) and 0 or -X
local iS = (y==Y) and 0 or X
for x=1, X do
local iW = (x==1) and 0 or -1
local iE = (x==X) and 0 or 1
-- Laplacian Δdem × 1/4
temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i]
i = i + 1
end
end
for i=1, X*Y do
dem[i] = dem[i] + temp[i]*ddiff
end
end
end
local modpath = ""
if minetest then
if minetest.global_exists('mapgen_rivers') then
modpath = mapgen_rivers.modpath .. "terrainlib_lua/"
else
modpath = minetest.get_modpath(minetest.get_current_modname()) .. "terrainlib_lua/"
end
end
local rivermapper = dofile(modpath .. "rivermapper.lua")
local gaussian = dofile(modpath .. "gaussian.lua")
local function flow(model)
model.dirs, model.lakes = rivermapper.flow_routing(model.dem, model.dirs, model.lakes)
model.rivers = rivermapper.accumulate(model.dirs, model.rivers)
end
local function uplift(model, time)
-- Raises the terrain according to uplift rate (model.params.uplift)
local dem = model.dem
local X, Y = dem.X, dem.Y
local uplift_rate = model.params.uplift
if type(uplift_rate) == "number" then
local uplift_total = uplift_rate * time
for i=1, X*Y do
dem[i] = dem[i] + uplift_total
end
else
for i=1, X*Y do
dem[i] = dem[i] + uplift_rate[i]*time
end
end
end
local function noise(model, time)
-- Adds noise to the terrain according to noise depth (model.params.noise)
local random = math.random
local dem = model.dem
local noise_depth = model.params.noise * 2 * time
local X, Y = dem.X, dem.Y
for i=1, X*Y do
dem[i] = dem[i] + (random()-0.5) * noise_depth
end
end
-- Isostasy
-- This is the geological phenomenon that makes the lithosphere "float" over the underlying layers.
-- One of the key implications is that when a very large mass is removed from the ground, the lithosphere reacts by moving upward. This compensation only occurs at large scale (as the lithosphere is not flexible enough for small scale adjustments) so the implementation is using a very large-window Gaussian blur of the elevation array.
-- This implementation is quite simplistic, it does not do a mass balance of the lithosphere as this would introduce too many parameters. Instead, it defines a reference equilibrium elevation, and the ground will react toward this elevation (at the scale of the gaussian window).
-- A change in reference isostasy during the run can also be used to simulate tectonic forcing, like making a new mountain range appear.
local function define_isostasy(model, ref, link)
ref = ref or model.dem
if link then
model.isostasy_ref = ref
return
end
local X, Y = ref.X, ref.Y
local ref2 = model.isostasy_ref or {X=X, Y=Y}
model.isostasy_ref = ref2
for i=1, X*Y do
ref2[i] = ref[i]
end
return ref2
end
-- Apply isostasy
local function isostasy(model)
local dem = model.dem
local X, Y = dem.X, dem.Y
local temp = {X=X, Y=Y}
local ref = model.isostasy_ref
for i=1, X*Y do
temp[i] = ref[i] - dem[i] -- Compute the difference between the ground level and the target level
end
-- Blur the difference map using Gaussian blur
gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4)
for i=1, X*Y do
dem[i] = dem[i] + temp[i] -- Apply the difference
end
end
local evol_model_mt = {
erode = erode,
diffuse = diffuse,
flow = flow,
uplift = uplift,
noise = noise,
isostasy = isostasy,
define_isostasy = define_isostasy,
}
evol_model_mt.__index = evol_model_mt
local defaults = {
K = 1,
m = 0.5,
d = 1,
variable_erosion = false,
sea_level = 0,
uplift = 10,
noise = 0.001,
compensation_radius = 50,
}
local function EvolutionModel(params)
params = params or {}
local o = {params = params}
for k, v in pairs(defaults) do
if params[k] == nil then
params[k] = v
end
end
o.dem = params.dem
return setmetatable(o, evol_model_mt)
end
return EvolutionModel