mapgen_rivers/polygons.lua

206 lines
6.9 KiB
Lua

local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/'
local mod_data_path = modpath .. 'river_data/'
if not io.open(mod_data_path .. 'size', 'r') then
mod_data_path = modpath .. 'demo_data/'
end
local world_data_path = minetest.get_worldpath() .. '/river_data/'
minetest.mkdir(world_data_path)
local load_map = dofile(modpath .. 'load.lua')
local function copy_if_needed(filename)
local wfilename = world_data_path..filename
local wfile = io.open(wfilename, 'rb')
if wfile then
wfile:close()
return
end
local mfilename = mod_data_path..filename
local mfile = io.open(mfilename, 'rb')
local wfile = io.open(wfilename, 'wb')
wfile:write(mfile:read("*all"))
mfile:close()
wfile:close()
end
copy_if_needed('size')
local sfile = io.open(world_data_path..'size', 'r')
local X = tonumber(sfile:read('*l'))
local Z = tonumber(sfile:read('*l'))
sfile:close()
copy_if_needed('dem')
local dem = load_map('dem', 2, true, X*Z)
copy_if_needed('lakes')
local lakes = load_map('lakes', 2, true, X*Z)
copy_if_needed('dirs')
local dirs = load_map('dirs', 1, false, X*Z)
copy_if_needed('rivers')
local rivers = load_map('rivers', 4, false, X*Z)
copy_if_needed('offset_x')
local offset_x = load_map('offset_x', 1, true, X*Z)
for k, v in ipairs(offset_x) do
offset_x[k] = (v+0.5)/256
end
copy_if_needed('offset_y')
local offset_z = load_map('offset_y', 1, true, X*Z)
for k, v in ipairs(offset_z) do
offset_z[k] = (v+0.5)/256
end
-- To index a flat array representing a 2D map
local function index(x, z)
return z*X+x+1
end
local blocksize = mapgen_rivers.blocksize
local min_catchment = mapgen_rivers.min_catchment
local max_catchment = mapgen_rivers.max_catchment
-- Width coefficients: coefficients solving
-- wfactor * min_catchment ^ wpower = 1/(2*blocksize)
-- wfactor * max_catchment ^ wpower = 1
local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment)
local wfactor = 1 / max_catchment ^ wpower
local function river_width(flow)
flow = math.abs(flow)
if flow < min_catchment then
return 0
end
return math.min(wfactor * flow ^ wpower, 1)
end
local noise_heat -- Need a large-scale noise here so no heat blend
local elevation_chill = mapgen_rivers.elevation_chill
local function get_temperature(x, y, z)
local pos = {x=x, y=z}
return noise_heat:get2d(pos) - y*elevation_chill
end
local glaciers = mapgen_rivers.glaciers
local glacier_factor = mapgen_rivers.glacier_factor
local init = false
-- On map generation, determine into which polygon every point (in 2D) will fall.
-- Also store polygon-specific data
local function make_polygons(minp, maxp)
if not init then
if glaciers then
noise_heat = minetest.get_perlin(mapgen_rivers.noise_params.heat)
end
init = true
end
local chulens = maxp.x - minp.x + 1
local polygons = {}
-- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize.
local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2)
local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2)
-- Iterate over the polygons
for xp = xpmin, xpmax do
for zp=zpmin, zpmax do
local iA = index(xp, zp)
local iB = index(xp+1, zp)
local iC = index(xp+1, zp+1)
local iD = index(xp, zp+1)
-- Extract the vertices of the polygon
local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp}
local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1}
local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}}
local bounds = {} -- Will be a list of the intercepts of polygon edges for every Z position (scanline algorithm)
-- Calculate the min and max Z positions
local zmin = math.max(math.floor(blocksize*math.min(unpack(poly_z)))+1, minp.z)
local zmax = math.min(math.floor(blocksize*math.max(unpack(poly_z))), maxp.z)
-- And initialize the arrays
for z=zmin, zmax do
bounds[z] = {}
end
local i1 = 4
for i2=1, 4 do -- Loop on 4 edges
local z1, z2 = poly_z[i1], poly_z[i2]
-- Calculate the integer Z positions over which this edge spans
local lzmin = math.floor(blocksize*math.min(z1, z2))+1
local lzmax = math.floor(blocksize*math.max(z1, z2))
if lzmin <= lzmax then -- If there is at least one position in it
local x1, x2 = poly_x[i1], poly_x[i2]
-- Calculate coefficient of the equation defining the edge: X=aZ+b
local a = (x1-x2) / (z1-z2)
local b = blocksize*(x1 - a*z1)
for z=math.max(lzmin, minp.z), math.min(lzmax, maxp.z) do
-- For every Z position involved, add the intercepted X position in the table
table.insert(bounds[z], a*z+b)
end
end
i1 = i2
end
for z=zmin, zmax do
-- Now sort the bounds list
local zlist = bounds[z]
table.sort(zlist)
local c = math.floor(#zlist/2)
for l=1, c do
-- Take pairs of X coordinates: all positions between them belong to the polygon.
local xmin = math.max(math.floor(zlist[l*2-1])+1, minp.x)
local xmax = math.min(math.floor(zlist[l*2]), maxp.x)
local i = (z-minp.z) * chulens + (xmin-minp.x) + 1
for x=xmin, xmax do
-- Fill the map at these places
polygons[i] = polygon
i = i + 1
end
end
end
local poly_dem = {dem[iA], dem[iB], dem[iC], dem[iD]}
polygon.dem = poly_dem
polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD])
-- Now, rivers.
-- Load river flux values for the 4 corners
local riverA = river_width(rivers[iA])
local riverB = river_width(rivers[iB])
local riverC = river_width(rivers[iC])
local riverD = river_width(rivers[iD])
if glaciers then -- Widen the river
if get_temperature(poly_x[1]*blocksize, poly_dem[1], poly_z[1]*blocksize) < 0 then
riverA = math.min(riverA*glacier_factor, 1)
end
if get_temperature(poly_x[2]*blocksize, poly_dem[2], poly_z[2]*blocksize) < 0 then
riverB = math.min(riverB*glacier_factor, 1)
end
if get_temperature(poly_x[3]*blocksize, poly_dem[3], poly_z[3]*blocksize) < 0 then
riverC = math.min(riverC*glacier_factor, 1)
end
if get_temperature(poly_x[4]*blocksize, poly_dem[4], poly_z[4]*blocksize) < 0 then
riverD = math.min(riverD*glacier_factor, 1)
end
end
polygon.river_corners = {riverA, 1-riverB, 2-riverC, 1-riverD}
-- Flow directions
local dirA, dirB, dirC, dirD = dirs[iA], dirs[iB], dirs[iC], dirs[iD]
-- Determine the river flux on the edges, by testing dirs values
local river_west = (dirA==1 and riverA or 0) + (dirD==3 and riverD or 0)
local river_north = (dirA==2 and riverA or 0) + (dirB==4 and riverB or 0)
local river_east = 1 - (dirB==1 and riverB or 0) - (dirC==3 and riverC or 0)
local river_south = 1 - (dirD==2 and riverD or 0) - (dirC==4 and riverC or 0)
polygon.rivers = {river_west, river_north, river_east, river_south}
end
end
return polygons
end
return make_polygons