mtsatellite/common/renderer.go
Sascha L. Teichmann 6a1356f0eb When an tile is rendered the writing to disk can be done in background
concurrently to the rendering of the next tile.
2017-03-06 15:43:30 +01:00

398 lines
7.8 KiB
Go

// Copyright 2014, 2015 by Sascha L. Teichmann
// Use of this source code is governed by the MIT license
// that can be found in the LICENSE file.
package common
import (
"image"
"image/color"
"math"
)
type Renderer struct {
width int
height int
xOfs int16
zOfs int16
yBuffer []int32
yMin []int32
cBuffer []int32
RejectedBlocks int
SolidBlocks int
TransparentBlocks int
spans *SpanPool
tBuffer []*Span
}
func NewRenderer(width, height int, transparent bool) (renderer *Renderer) {
dim := width * height
pixSize := dim * 16 * 16
yBuffer := make([]int32, pixSize)
cBuffer := make([]int32, pixSize)
yMin := make([]int32, dim)
var tBuffer []*Span
var spans *SpanPool
if transparent {
tBuffer = make([]*Span, pixSize)
spans = NewSpanPool()
}
renderer = &Renderer{
width: width,
height: height,
yBuffer: yBuffer,
cBuffer: cBuffer,
yMin: yMin,
tBuffer: tBuffer,
spans: spans}
renderer.initBuffers()
return
}
func (r *Renderer) SetPos(xOfs, zOfs int16) {
r.xOfs = xOfs
r.zOfs = zOfs
}
func (r *Renderer) GetPos() (int16, int16) {
return r.xOfs, r.zOfs
}
func (r *Renderer) initBuffers() {
yb := r.yBuffer
yb = yb[:len(yb)]
for i := range yb {
yb[i] = math.MinInt32
}
cb := r.cBuffer
cb = cb[:len(cb)]
for i := range cb {
cb[i] = -1
}
ym := r.yMin
ym = ym[:len(ym)]
for i := range ym {
ym[i] = math.MinInt32
}
}
func (r *Renderer) Reset() {
r.RejectedBlocks = 0
if r.SolidBlocks > 0 || r.TransparentBlocks > 0 {
r.SolidBlocks = 0
r.initBuffers()
}
if r.TransparentBlocks > 0 {
r.TransparentBlocks = 0
tb := r.tBuffer
for i, t := range tb {
if t != nil {
r.spans.FreeAll(t)
tb[i] = nil
}
}
}
}
func (r *Renderer) IsFilled() bool {
for _, y := range r.yMin {
if y == math.MinInt32 {
return false
}
}
return true
}
func (r *Renderer) IsEmpty() bool {
return r.SolidBlocks == 0 && r.TransparentBlocks == 0
}
// down goes down the y direction in a block from top to bottom.
// In its loop it copies the logic of Block.Content pulling some
// things like the version check and common indexing out to
// save some cycles.
func down(db *DecodedBlock, x, y, z int) (int32, int) {
mc := db.MapContent
switch {
case db.Version >= 24:
for sliver := (z<<8 + x) << 1; y >= 0; y-- {
pos := sliver + y<<5
content := int32(mc[pos])<<8 | int32(mc[pos+1])
if content != db.AirID && content != db.IgnoreID {
if c, found := db.IndexMap[content]; found {
return c, y
}
}
}
case db.Version >= 20:
for sliver := z<<8 + x; y >= 0; y-- {
pos := sliver + y<<4
var content int32
if c := mc[pos]; c <= 0x80 {
content = int32(c)
} else {
content = int32(c)<<4 | int32(mc[pos+0x2000])>>4
}
if content != db.AirID && content != db.IgnoreID {
if c, found := db.IndexMap[content]; found {
return c, y
}
}
}
}
return -1, -1
}
func (r *Renderer) RenderBlock(block *Block, colors *Colors) (err error) {
bx := block.Coord.X - r.xOfs
bz := block.Coord.Z - r.zOfs
// We do not need to render the block if the whole 16x16 area
// is already filled and the block is strictly below.
blockY := int32(block.Coord.Y) << 4
pos := int(bz)*r.width + int(bx)
if blockY < r.yMin[pos] {
r.RejectedBlocks++
return
}
// Decoding is pretty expensive so do it that late.
var db *DecodedBlock
if db, err = NewDecodedBlock(block.Data, colors); err != nil {
return
}
if db.AirOnly() {
r.RejectedBlocks++
return
}
w := r.width << 4
ofs := int(bz)*w<<4 + int(bx)<<4
yB := r.yBuffer
yMin := int32(math.MaxInt32)
if db.Transparent && r.tBuffer != nil {
r.TransparentBlocks++
for z := 0; z < 16; z++ {
for x := 0; x < 16; x++ {
currentY := yB[ofs]
if currentY < blockY {
var c int32
for y := 15; ; y-- {
if c, y = down(db, x, y, z); y < 0 {
break
}
cY := blockY + int32(y)
if colors.IsTransparent(c) {
r.tBuffer[ofs] = r.spans.Insert(r.tBuffer[ofs], cY, c)
// We need to continue to go down because we
// can see through this node.
} else {
r.cBuffer[ofs] = c
currentY = cY
yB[ofs] = currentY
break
}
}
}
if currentY < yMin {
yMin = currentY
}
ofs++
}
ofs += w - 16
}
} else {
r.SolidBlocks++
for z := 0; z < 16; z++ {
for x := 0; x < 16; x++ {
currentY := yB[ofs]
if currentY < blockY {
if c, y := down(db, x, 15, z); y >= 0 {
r.cBuffer[ofs] = c
currentY = blockY + int32(y)
yB[ofs] = currentY
}
}
if currentY < yMin {
yMin = currentY
}
ofs++
}
ofs += w - 16
}
}
r.yMin[pos] = yMin
return
}
func (r *Renderer) CreateImage(colors []color.RGBA, background color.RGBA) *image.RGBA {
pw, ph := r.width<<4, r.height<<4
image := image.NewRGBA(image.Rect(0, 0, pw, ph))
ofs, numCols := 0, int32(len(colors))
for z := ph - 1; z >= 0; z-- {
for x := 0; x < pw; x++ {
colIdx := r.cBuffer[ofs]
if colIdx >= 0 && colIdx < numCols {
image.Set(x, z, colors[colIdx])
} else {
image.Set(x, z, background)
}
ofs++
}
}
return image
}
func safeColor(x int32) uint8 {
switch {
case x < 0:
return 0
case x > 255:
return 255
default:
return uint8(x)
}
}
func (r *Renderer) CreateShadedImage(
xOfs, zOfs, width, height int,
cols *Colors, background color.RGBA) *image.RGBA {
image := image.NewRGBA(image.Rect(0, 0, width, height))
pw := r.width << 4
cs := cols.Colors
ofs, numCols := zOfs*pw+xOfs, int32(len(cs))
stride := pw - width
istride := image.Stride + 4*width
iofs := image.PixOffset(0, height-1)
pix := image.Pix
if r.TransparentBlocks > 0 { // Fast path for transparent images.
for z := height - 1; z >= 0; z-- {
for x := 0; x < width; x++ {
colIdx := r.cBuffer[ofs]
if colIdx < 0 || colIdx >= numCols {
pix[iofs] = background.R
pix[iofs+1] = background.G
pix[iofs+2] = background.B
pix[iofs+3] = 0xff
} else {
y := r.yBuffer[ofs]
t := r.tBuffer[ofs]
opaque := t == nil || t.Top() < y
var y1, y2 int32
if x == 0 {
y1 = y
} else {
y1 = r.yBuffer[ofs-1]
if opaque {
if s := r.tBuffer[ofs-1]; s != nil {
y1 = max32(y1, s.Top())
}
}
}
if z == 0 {
y2 = y
} else {
y2 = r.yBuffer[ofs+pw]
if opaque {
if s := r.tBuffer[ofs+pw]; s != nil {
y1 = max32(y1, s.Top())
}
}
}
d := ((y - y1) + (y - y2)) * 12
if d > 36 {
d = 36
}
col := cs[colIdx]
col = color.RGBA{
R: safeColor(int32(col.R) + d),
G: safeColor(int32(col.G) + d),
B: safeColor(int32(col.B) + d),
A: 0xff}
if !opaque {
col = cols.BlendColors(t, col, y)
}
pix[iofs] = col.R
pix[iofs+1] = col.G
pix[iofs+2] = col.B
pix[iofs+3] = col.A
}
iofs += 4
ofs++
}
ofs += stride
iofs -= istride
}
} else { // Solid images.
for z := height - 1; z >= 0; z-- {
for x := 0; x < width; x++ {
colIdx := r.cBuffer[ofs]
if colIdx < 0 || colIdx >= numCols {
pix[iofs] = background.R
pix[iofs+1] = background.G
pix[iofs+2] = background.B
pix[iofs+3] = 0xff
} else {
var y, y1, y2 int32
y = r.yBuffer[ofs]
if x == 0 {
y1 = y
} else {
y1 = r.yBuffer[ofs-1]
}
if z == 0 {
y2 = y
} else {
y2 = r.yBuffer[ofs+pw]
}
d := ((y - y1) + (y - y2)) * 12
if d > 36 {
d = 36
}
col := cs[colIdx]
pix[iofs] = safeColor(int32(col.R) + d)
pix[iofs+1] = safeColor(int32(col.G) + d)
pix[iofs+2] = safeColor(int32(col.B) + d)
pix[iofs+3] = 0xff
}
iofs += 4
ofs++
}
ofs += stride
iofs -= istride
}
}
return image
}