local r_corr = 0.25 --remove a bit more nodes (if shooting diagonal) to let it look like a hole (sth like antialiasing) -- this doesn't need to be calculated every time local f_1 = 0.5-r_corr local f_2 = 0.5+r_corr --returns information about the direction local function get_used_dir(dir) local abs_dir = {x=math.abs(dir.x), y=math.abs(dir.y), z=math.abs(dir.z)} local dir_max = math.max(abs_dir.x, abs_dir.y, abs_dir.z) if dir_max == abs_dir.x then local tab = {"x", {x=1, y=dir.y/dir.x, z=dir.z/dir.x}} if dir.x >= 0 then tab[3] = "+" end return tab end if dir_max == abs_dir.y then local tab = {"y", {x=dir.x/dir.y, y=1, z=dir.z/dir.y}} if dir.y >= 0 then tab[3] = "+" end return tab end local tab = {"z", {x=dir.x/dir.z, y=dir.y/dir.z, z=1}} if dir.z >= 0 then tab[3] = "+" end return tab end local function node_tab(z, d) local n1 = math.floor(z*d+f_1) local n2 = math.floor(z*d+f_2) if n1 == n2 then return {n1} end return {n1, n2} end local function return_line(pos, dir, range) --range ~= length local tab = {} local num = 1 local t_dir = get_used_dir(dir) local dir_typ = t_dir[1] if t_dir[3] == "+" then f_tab = {0, range, 1} else f_tab = {0, -range, -1} end local d_ch = t_dir[2] if dir_typ == "x" then for d = f_tab[1],f_tab[2],f_tab[3] do local x = d local ytab = node_tab(d_ch.y, d) local ztab = node_tab(d_ch.z, d) for _,y in ipairs(ytab) do for _,z in ipairs(ztab) do tab[num] = {x=pos.x+x, y=pos.y+y, z=pos.z+z} num = num+1 end end end elseif dir_typ == "y" then for d = f_tab[1],f_tab[2],f_tab[3] do local xtab = node_tab(d_ch.x, d) local y = d local ztab = node_tab(d_ch.z, d) for _,x in ipairs(xtab) do for _,z in ipairs(ztab) do tab[num] = {x=pos.x+x, y=pos.y+y, z=pos.z+z} num = num+1 end end end else for d = f_tab[1],f_tab[2],f_tab[3] do local xtab = node_tab(d_ch.x, d) local ytab = node_tab(d_ch.y, d) local z = d for _,x in ipairs(xtab) do for _,y in ipairs(ytab) do tab[num] = {x=pos.x+x, y=pos.y+y, z=pos.z+z} num = num+1 end end end end return tab end local function table_contains2(t, v) for i = #t, 1, -1 do if t[i] == v then return true end end return false end local function return_fine_line(pos, dir, range, scale) local ps1 = return_line(vector.round(vector.multiply(pos, scale)), dir, range*scale) local ps2 = {} local ps2_num = 1 for _,p1 in ipairs(ps1) do local p2 = vector.round(vector.divide(p1, scale)) if not table_contains2(ps2, p2) then ps2[ps2_num] = p2 ps2_num = ps2_num+1 end end return ps2 end function vector.fine_line(pos, dir, range, scale) --assert_vector(pos) if not range then --dir = pos2 dir = vector.direction(pos, dir) range = vector.distance(pos, dir) end return return_fine_line(pos, dir, range, scale) end function vector.line(pos, dir, range) --assert_vector(pos) if not range then --dir = pos2 dir = vector.direction(pos, dir) range = vector.distance(pos, dir) end return return_line(pos, dir, range) end function vector.straightdelay(s, v, a) if not a then return s/v end return (math.sqrt(v*v+2*a*s)-v)/a end -- needs to get reworked function vector.sun_dir(t) if t < 0.25 or t > 0.75 then return end local p2 if t > 0.5 then p2 = {x=-4, y=1/(2*t-1), z=0} else p2 = {x=4, y=1/(1-2*t), z=0} end return vector.direction({x=0,y=0,z=0}, p2) end function vector.inside(pos, minp, maxp) for _,i in ipairs({"x", "y", "z"}) do if pos[i] < minp[i] or pos[i] > maxp[i] then return false end end return true end function vector.minmax(p1, p2) local p1 = vector.new(p1) --Are these 2 redefinitions necessary? local p2 = vector.new(p2) for _,i in ipairs({"x", "y", "z"}) do if p1[i] > p2[i] then p1[i], p2[i] = p2[i], p1[i] end end return p1, p2 end function vector.move(p1, p2, s) return vector.round( vector.add( vector.multiply( vector.direction( p1, p2 ), s ), p1 ) ) end local explosion_tables = {} function vector.explosion_table(r) local table = explosion_tables[r] if table then return table end local t1 = os.clock() local tab, n = {}, 1 local tmp = r*r + r for x=-r,r do for y=-r,r do for z=-r,r do local rc = x*x+y*y+z*z if rc <= tmp then local np={x=x, y=y, z=z} if math.floor(math.sqrt(rc) +0.5) > r-1 then tab[n] = {np, true} else tab[n] = {np} end n = n+1 end end end end explosion_tables[r] = tab print(string.format("[vector_extras] table created after ca. %.2fs", os.clock() - t1)) return tab end local circle_tables = {} function vector.circle(r) local table = circle_tables[r] if table then return table end local t1 = os.clock() local tab, n = {}, 1 for i = -r, r do for j = -r, r do if math.floor(math.sqrt(i*i+j*j)+0.5) == r then tab[n] = {x=i, y=0, z=j} n = n+1 end end end circle_tables[r] = tab print(string.format("[vector_extras] table created after ca. %.2fs", os.clock() - t1)) return tab end local ring_tables = {} function vector.ring(r) local table = ring_tables[r] if table then return table end local t1 = os.clock() local tab, n = {}, 1 local tmp = r*r local p = {x=math.floor(r+0.5), z=0} while p.x > 0 do tab[n] = p n = n+1 local p1, p2 = {x=p.x-1, z=p.z}, {x=p.x, z=p.z+1} local dif1 = math.abs(tmp-p1.x*p1.x-p1.z*p1.z) local dif2 = math.abs(tmp-p2.x*p2.x-p2.z*p2.z) if dif1 <= dif2 then p = p1 else p = p2 end end local tab2, n = {}, 1 for _,i in ipairs(tab) do for _,j in ipairs({ {i.x, i.z}, {-i.z, i.x}, {-i.x, -i.z}, {i.z, -i.x}, }) do tab2[n] = {x=j[1], y=0, z=j[2]} n = n+1 end end ring_tables[r] = tab2 print(string.format("[vector_extras] table created after ca. %.2fs", os.clock() - t1)) return tab2 end