---------------------------------------------------------------------------------------
-- This code is entirely based on Jumper library 1.8.1 by Roland Yonaba.
-- The modifications are only to make it work under Minetest's secure
-- environment. Therefore, the code in this file is under the MIT license
-- as the original Jumper library (please see copyright notice below).
-- The original library code can be found here:
-- https://github.com/Yonaba/Jumper/releases/tag/jumper-1.8.1-1
-- Modifications are by Hector Franqui (Zorman2000)
---------------------------------------------------------------------------------------
-- Copyright (c) 2012-2013 Roland Yonaba
-- Permission is hereby granted, free of charge, to any person obtaining a
-- copy of this software and associated documentation files (the
-- "Software"), to deal in the Software without restriction, including
-- without limitation the rights to use, copy, modify, merge, publish,
-- distribute, sublicense, and/or sell copies of the Software, and to
-- permit persons to whom the Software is furnished to do so, subject to
-- the following conditions:
-- The above copyright notice and this permission notice shall be included
-- in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
-- OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
-- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
-- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
-- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
-- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--
---------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------
-- Local variables declarations
local abs = math.abs
local sqrt = math.sqrt
local max = math.max
local floor = math.floor
local t_insert, t_remove = table.insert, table.remove
local huge = math.huge
---------------------------------------------------------------------------------------
-- Heuristics based on implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/core/heuristics.lua
---------------------------------------------------------------------------------------
local Heuristics = {
['MANHATTAN'] = function(nodeA, nodeB)
local dx = abs(nodeA._x - nodeB._x)
local dy = abs(nodeA._y - nodeB._y)
return (dx + dy)
end,
['EUCLIDIAN'] = function(nodeA, nodeB)
local dx = nodeA._x - nodeB._x
local dy = nodeA._y - nodeB._y
return sqrt(dx*dx+dy*dy)
end
}
---------------------------------------------------------------------------------------
-- Node class implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/core/node.lua
---------------------------------------------------------------------------------------
local Node = setmetatable({},
{__call = function(self,...)
return Node:new(...)
end}
)
Node.__index = Node
--- Inits a new `node`
-- @class function
-- @tparam int x the x-coordinate of the node on the collision map
-- @tparam int y the y-coordinate of the node on the collision map
-- @treturn node a new `node`
-- @usage local node = Node(3,4)
function Node:new(x,y)
return setmetatable({_x = x, _y = y, _clearance = {}}, Node)
end
-- Enables the use of operator '<' to compare nodes.
-- Will be used to sort a collection of nodes in a binary heap on the basis of their F-cost
function Node.__lt(A,B) return (A._f < B._f) end
--- Returns x-coordinate of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @usage local x = node:getX()
function Node:getX() return self._x end
--- Returns y-coordinate of a `node`
-- @class function
-- @treturn number the y-coordinate of the `node`
-- @usage local y = node:getY()
function Node:getY() return self._y end
--- Returns x and y coordinates of a `node`
-- @class function
-- @treturn number the x-coordinate of the `node`
-- @treturn number the y-coordinate of the `node`
-- @usage local x, y = node:getPos()
function Node:getPos() return self._x, self._y end
--- Returns the amount of true [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)
-- for a given `node`
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn int the clearance of the `node`
-- @usage
-- -- Assuming walkable was 0
-- local clearance = node:getClearance(0)
function Node:getClearance(walkable)
return self._clearance[walkable]
end
--- Removes the clearance value for a given walkable.
-- @class function
-- @tparam string|int|func walkable the value for walkable locations in the collision map array.
-- @treturn node self (the calling `node` itself, can be chained)
-- @usage
-- -- Assuming walkable is defined
-- node:removeClearance(walkable)
function Node:removeClearance(walkable)
self._clearance[walkable] = nil
return self
end
--- Clears temporary cached attributes of a `node`.
-- Deletes the attributes cached within a given node after a pathfinding call.
-- This function is internally used by the search algorithms, so you should not use it explicitely.
-- @class function
-- @treturn node self (the calling `node` itself, can be chained)
-- @usage
-- local thisNode = Node(1,2)
-- thisNode:reset()
function Node:reset()
self._g, self._h, self._f = nil, nil, nil
self._opened, self._closed, self._parent = nil, nil, nil
return self
end
---------------------------------------------------------------------------------------
-- Path class implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/core/path.lua
---------------------------------------------------------------------------------------
--- The `Path` class.
-- This class is callable.
-- Therefore, Path(...)
acts as a shortcut to Path:new(...)
.
-- @type Path
local Path = setmetatable({},
{__call = function(self,...)
return Path:new(...)
end
})
Path.__index = Path
--- Inits a new `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = Path()
function Path:new()
return setmetatable({_nodes = {}}, Path)
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns the `node` plus a count value. Aliased as @{Path:nodes}
-- @class function
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:nodes
-- @usage
-- for node, count in p:iter() do
-- ...
-- end
function Path:iter()
local i,pathLen = 1,#self._nodes
return function()
if self._nodes[i] then
i = i+1
return self._nodes[i-1],i-1
end
end
end
--- Iterates on each single `node` along a `path`. At each step of iteration,
-- returns a `node` plus a count value. Alias for @{Path:iter}
-- @class function
-- @name Path:nodes
-- @treturn node a `node`
-- @treturn int the count for the number of nodes
-- @see Path:iter
-- @usage
-- for node, count in p:nodes() do
-- ...
-- end
Path.nodes = Path.iter
--- Evaluates the `path` length
-- @class function
-- @treturn number the `path` length
-- @usage local len = p:getLength()
function Path:getLength()
local len = 0
for i = 2,#self._nodes do
len = len + Heuristic.EUCLIDIAN(self._nodes[i], self._nodes[i-1])
end
return len
end
--- Counts the number of steps.
-- Returns the number of waypoints (nodes) in the current path.
-- @class function
-- @tparam node node a node to be added to the path
-- @tparam[opt] int index the index at which the node will be inserted. If omitted, the node will be appended after the last node in the path.
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage local nSteps = p:countSteps()
function Path:addNode(node, index)
index = index or #self._nodes+1
t_insert(self._nodes, index, node)
return self
end
--- `Path` filling modifier. Interpolates between non contiguous nodes along a `path`
-- to build a fully continuous `path`. This maybe useful when using search algorithms such as Jump Point Search.
-- Does the opposite of @{Path:filter}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:filter
-- @usage p:fill()
function Path:fill()
local i = 2
local xi,yi,dx,dy
local N = #self._nodes
local incrX, incrY
while true do
xi,yi = self._nodes[i]._x,self._nodes[i]._y
dx,dy = xi-self._nodes[i-1]._x,yi-self._nodes[i-1]._y
if (abs(dx) > 1 or abs(dy) > 1) then
incrX = dx/max(abs(dx),1)
incrY = dy/max(abs(dy),1)
t_insert(self._nodes, i, self._grid:getNodeAt(self._nodes[i-1]._x + incrX, self._nodes[i-1]._y +incrY))
N = N+1
else i=i+1
end
if i>N then break end
end
return self
end
--- `Path` compression modifier. Given a `path`, eliminates useless nodes to return a lighter `path`
-- consisting of straight moves. Does the opposite of @{Path:fill}
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @see Path:fill
-- @usage p:filter()
function Path:filter()
local i = 2
local xi,yi,dx,dy, olddx, olddy
xi,yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi-self._nodes[i-1]._y
while true do
olddx, olddy = dx, dy
if self._nodes[i+1] then
i = i+1
xi, yi = self._nodes[i]._x, self._nodes[i]._y
dx, dy = xi - self._nodes[i-1]._x, yi - self._nodes[i-1]._y
if olddx == dx and olddy == dy then
t_remove(self._nodes, i-1)
i = i - 1
end
else break end
end
return self
end
--- Clones a `path`.
-- @class function
-- @treturn path a `path`
-- @usage local p = path:clone()
function Path:clone()
local p = Path:new()
for node in self:nodes() do p:addNode(node) end
return p
end
--- Checks if a `path` is equal to another. It also supports *filtered paths* (see @{Path:filter}).
-- @class function
-- @tparam path p2 a path
-- @treturn boolean a boolean
-- @usage print(myPath:isEqualTo(anotherPath))
function Path:isEqualTo(p2)
local p1 = self:clone():filter()
local p2 = p2:clone():filter()
for node, count in p1:nodes() do
if not p2._nodes[count] then return false end
local n = p2._nodes[count]
if n._x~=node._x or n._y~=node._y then return false end
end
return true
end
--- Reverses a `path`.
-- @class function
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:reverse()
function Path:reverse()
local _nodes = {}
for i = #self._nodes,1,-1 do
_nodes[#_nodes+1] = self._nodes[i]
end
self._nodes = _nodes
return self
end
--- Appends a given `path` to self.
-- @class function
-- @tparam path p a path
-- @treturn path self (the calling `path` itself, can be chained)
-- @usage myPath:append(anotherPath)
function Path:append(p)
for node in p:nodes() do self:addNode(node) end
return self
end
---------------------------------------------------------------------------------------
-- Utils class based on implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/core/utils.lua
---------------------------------------------------------------------------------------
local Utils = {
traceBackPath = function(finder, node, startNode)
local path = Path:new()
path._grid = finder._grid
while true do
if node._parent then
t_insert(path._nodes,1,node)
node = node._parent
else
t_insert(path._nodes,1,startNode)
return path
end
end
end,
-- Lookup for value in a table
indexOf = function(t,v)
for i = 1,#t do
if t[i] == v then return i end
end
return nil
end,
getArrayBounds = function(map)
local min_x, max_x
local min_y, max_y
for y in pairs(map) do
min_y = not min_y and y or (ymax_y and y or max_y)
for x in pairs(map[y]) do
min_x = not min_x and x or (xmax_x and x or max_x)
end
end
return min_x,max_x,min_y,max_y
end,
-- Converts an array to a set of nodes
arrayToNodes = function(map)
local min_x, max_x
local min_y, max_y
local nodes = {}
for y in pairs(map) do
min_y = not min_y and y or (ymax_y and y or max_y)
nodes[y] = {}
for x in pairs(map[y]) do
min_x = not min_x and x or (xmax_x and x or max_x)
nodes[y][x] = Node:new(x,y)
end
end
return nodes,
(min_x or 0), (max_x or 0),
(min_y or 0), (max_y or 0)
end
}
---------------------------------------------------------------------------------------
-- Bheap class implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/core/bheap.lua
---------------------------------------------------------------------------------------
-- Default comparison function
local function f_min(a,b) return a < b end
-- Percolates up
local function percolate_up(heap, index)
if index == 1 then return end
local pIndex
if index <= 1 then return end
if index%2 == 0 then
pIndex = index/2
else pIndex = (index-1)/2
end
if not heap._sort(heap._heap[pIndex], heap._heap[index]) then
heap._heap[pIndex], heap._heap[index] =
heap._heap[index], heap._heap[pIndex]
percolate_up(heap, pIndex)
end
end
-- Percolates down
local function percolate_down(heap,index)
local lfIndex,rtIndex,minIndex
lfIndex = 2*index
rtIndex = lfIndex + 1
if rtIndex > heap._size then
if lfIndex > heap._size then return
else minIndex = lfIndex end
else
if heap._sort(heap._heap[lfIndex],heap._heap[rtIndex]) then
minIndex = lfIndex
else
minIndex = rtIndex
end
end
if not heap._sort(heap._heap[index],heap._heap[minIndex]) then
heap._heap[index],heap._heap[minIndex] = heap._heap[minIndex],heap._heap[index]
percolate_down(heap,minIndex)
end
end
-- Produces a new heap
local function newHeap(template,comp)
return setmetatable({_heap = {},
_sort = comp or f_min, _size = 0},
template)
end
--- The `heap` class.
-- This class is callable.
-- _Therefore,_ heap(...)
_is used to instantiate new heaps_.
-- @type heap
local heap = setmetatable({},
{__call = function(self,...)
return newHeap(self,...)
end})
heap.__index = heap
--- Checks if a `heap` is empty
-- @class function
-- @treturn bool __true__ of no item is queued in the heap, __false__ otherwise
-- @usage
-- if myHeap:empty() then
-- print('Heap is empty!')
-- end
function heap:empty()
return (self._size==0)
end
--- Clears the `heap` (removes all items queued in the heap)
-- @class function
-- @treturn heap self (the calling `heap` itself, can be chained)
-- @usage myHeap:clear()
function heap:clear()
self._heap = {}
self._size = 0
self._sort = self._sort or f_min
return self
end
--- Adds a new item in the `heap`
-- @class function
-- @tparam value item a new value to be queued in the heap
-- @treturn heap self (the calling `heap` itself, can be chained)
-- @usage
-- myHeap:push(1)
-- -- or, with chaining
-- myHeap:push(1):push(2):push(4)
function heap:push(item)
if item then
self._size = self._size + 1
self._heap[self._size] = item
percolate_up(self, self._size)
end
return self
end
--- Pops from the `heap`.
-- Removes and returns the lowest cost item (with respect to the comparison function being used) from the `heap`.
-- @class function
-- @treturn value a value previously pushed into the heap
-- @usage
-- while not myHeap:empty() do
-- local lowestValue = myHeap:pop()
-- ...
-- end
function heap:pop()
local root
if self._size > 0 then
root = self._heap[1]
self._heap[1] = self._heap[self._size]
self._heap[self._size] = nil
self._size = self._size-1
if self._size>1 then
percolate_down(self, 1)
end
end
return root
end
--- Restores the `heap` property.
-- Reorders the `heap` with respect to the comparison function being used.
-- When given argument __item__ (a value existing in the `heap`), will sort from that very item in the `heap`.
-- Otherwise, the whole `heap` will be cheacked.
-- @class function
-- @tparam[opt] value item the modified value
-- @treturn heap self (the calling `heap` itself, can be chained)
-- @usage myHeap:heapify()
function heap:heapify(item)
if self._size == 0 then return end
if item then
local i = Utils.indexOf(self._heap,item)
if i then
percolate_down(self, i)
percolate_up(self, i)
end
return
end
for i = floor(self._size/2),1,-1 do
percolate_down(self,i)
end
return self
end
---------------------------------------------------------------------------------------
-- Grid class implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/grid.lua
---------------------------------------------------------------------------------------
local pairs = pairs
local assert = assert
local next = next
local setmetatable = setmetatable
local coroutine = coroutine
-- Offsets for straights moves
local straightOffsets = {
{x = 1, y = 0} --[[W]], {x = -1, y = 0}, --[[E]]
{x = 0, y = 1} --[[S]], {x = 0, y = -1}, --[[N]]
}
-- Offsets for diagonal moves
local diagonalOffsets = {
{x = -1, y = -1} --[[NW]], {x = 1, y = -1}, --[[NE]]
{x = -1, y = 1} --[[SW]], {x = 1, y = 1}, --[[SE]]
}
--- The `Grid` class.
-- This class is callable.
-- Therefore,_ Grid(...)
_acts as a shortcut to_ Grid:new(...)
.
-- @type Grid
Grid = setmetatable({},{
__call = function(self,...)
return self:new(...)
end
})
Grid.__index = Grid
-- Specialized grids
local PreProcessGrid = setmetatable({},Grid)
local PostProcessGrid = setmetatable({},Grid)
PreProcessGrid.__index = PreProcessGrid
PostProcessGrid.__index = PostProcessGrid
PreProcessGrid.__call = function (self,x,y)
return self:getNodeAt(x,y)
end
PostProcessGrid.__call = function (self,x,y,create)
if create then return self:getNodeAt(x,y) end
return self._nodes[y] and self._nodes[y][x]
end
--- Inits a new `grid`
-- @class function
-- @tparam table|string map A collision map - (2D array) with consecutive indices (starting at 0 or 1)
-- or a `string` with line-break chars (\n
or \r
) as row delimiters.
-- @tparam[opt] bool cacheNodeAtRuntime When __true__, returns an empty `grid` instance, so that
-- later on, indexing a non-cached `node` will cause it to be created and cache within the `grid` on purpose (i.e, when needed).
-- This is a __memory-safe__ option, in case your dealing with some tight memory constraints.
-- Defaults to __false__ when omitted.
-- @treturn grid a new `grid` instance
-- @usage
-- -- A simple 3x3 grid
-- local myGrid = Grid:new({{0,0,0},{0,0,0},{0,0,0}})
--
-- -- A memory-safe 3x3 grid
-- myGrid = Grid('000\n000\n000', true)
function Grid:new(map, cacheNodeAtRuntime)
if type(map) == 'string' then
map = Utils.strToMap(map)
end
if cacheNodeAtRuntime then
return PostProcessGrid:new(map,walkable)
end
return PreProcessGrid:new(map,walkable)
end
--- Checks if `node` at [x,y] is __walkable__.
-- Will check if `node` at location [x,y] both *exists* on the collision map and *is walkable*
-- @class function
-- @tparam int x the x-location of the node
-- @tparam int y the y-location of the node
-- @tparam[opt] string|int|func walkable the value for walkable locations in the collision map array (see @{Grid:new}).
-- Defaults to __false__ when omitted.
-- If this parameter is a function, it should be prototyped as __f(value)__ and return a `boolean`:
-- __true__ when value matches a __walkable__ `node`, __false__ otherwise. If this parameter is not given
-- while location [x,y] __is valid__, this actual function returns __true__.
-- @tparam[optchain] int clearance the amount of clearance needed. Defaults to 1 (normal clearance) when not given.
-- @treturn bool __true__ if `node` exists and is __walkable__, __false__ otherwise
-- @usage
-- -- Always true
-- print(myGrid:isWalkableAt(2,3))
--
-- -- True if node at [2,3] collision map value is 0
-- print(myGrid:isWalkableAt(2,3,0))
--
-- -- True if node at [2,3] collision map value is 0 and has a clearance higher or equal to 2
-- print(myGrid:isWalkableAt(2,3,0,2))
--
function Grid:isWalkableAt(x, y, walkable, clearance)
local nodeValue = self._map[y] and self._map[y][x]
if nodeValue then
if not walkable then return true end
else
return false
end
local hasEnoughClearance = not clearance and true or false
if not hasEnoughClearance then
if not self._isAnnotated[walkable] then return false end
local node = self:getNodeAt(x,y)
local nodeClearance = node:getClearance(walkable)
hasEnoughClearance = (nodeClearance >= clearance)
end
if self._eval then
return walkable(nodeValue) and hasEnoughClearance
end
return ((nodeValue == walkable) and hasEnoughClearance)
end
--- Returns the `grid` width.
-- @class function
-- @treturn int the `grid` width
-- @usage print(myGrid:getWidth())
function Grid:getWidth()
return self._width
end
--- Returns the `grid` height.
-- @class function
-- @treturn int the `grid` height
-- @usage print(myGrid:getHeight())
function Grid:getHeight()
return self._height
end
--- Returns the collision map.
-- @class function
-- @treturn map the collision map (see @{Grid:new})
-- @usage local map = myGrid:getMap()
function Grid:getMap()
return self._map
end
--- Returns the set of nodes.
-- @class function
-- @treturn {{node,...},...} an array of nodes
-- @usage local nodes = myGrid:getNodes()
function Grid:getNodes()
return self._nodes
end
--- Returns the `grid` bounds. Returned values corresponds to the upper-left
-- and lower-right coordinates (in tile units) of the actual `grid` instance.
-- @class function
-- @treturn int the upper-left corner x-coordinate
-- @treturn int the upper-left corner y-coordinate
-- @treturn int the lower-right corner x-coordinate
-- @treturn int the lower-right corner y-coordinate
-- @usage local left_x, left_y, right_x, right_y = myGrid:getBounds()
function Grid:getBounds()
return self._min_x, self._min_y,self._max_x, self._max_y
end
--- Returns neighbours. The returned value is an array of __walkable__ nodes neighbouring a given `node`.
-- @class function
-- @tparam node node a given `node`
-- @tparam[opt] string|int|func walkable the value for walkable locations in the collision map array (see @{Grid:new}).
-- Defaults to __false__ when omitted.
-- @tparam[optchain] bool allowDiagonal when __true__, allows adjacent nodes are included (8-neighbours).
-- Defaults to __false__ when omitted.
-- @tparam[optchain] bool tunnel When __true__, allows the `pathfinder` to tunnel through walls when heading diagonally.
-- @tparam[optchain] int clearance When given, will prune for the neighbours set all nodes having a clearance value lower than the passed-in value
-- Defaults to __false__ when omitted.
-- @treturn {node,...} an array of nodes neighbouring a given node
-- @usage
-- local aNode = myGrid:getNodeAt(5,6)
-- local neighbours = myGrid:getNeighbours(aNode, 0, true)
function Grid:getNeighbours(node, walkable, allowDiagonal, tunnel, clearance)
local neighbours = {}
for i = 1,#straightOffsets do
local n = self:getNodeAt(
node._x + straightOffsets[i].x,
node._y + straightOffsets[i].y
)
if n and self:isWalkableAt(n._x, n._y, walkable, clearance) then
neighbours[#neighbours+1] = n
end
end
if not allowDiagonal then return neighbours end
tunnel = not not tunnel
for i = 1,#diagonalOffsets do
local n = self:getNodeAt(
node._x + diagonalOffsets[i].x,
node._y + diagonalOffsets[i].y
)
if n and self:isWalkableAt(n._x, n._y, walkable, clearance) then
if tunnel then
neighbours[#neighbours+1] = n
else
local skipThisNode = false
local n1 = self:getNodeAt(node._x+diagonalOffsets[i].x, node._y)
local n2 = self:getNodeAt(node._x, node._y+diagonalOffsets[i].y)
if ((n1 and n2) and not self:isWalkableAt(n1._x, n1._y, walkable, clearance) and not self:isWalkableAt(n2._x, n2._y, walkable, clearance)) then
skipThisNode = true
end
if not skipThisNode then neighbours[#neighbours+1] = n end
end
end
end
return neighbours
end
--- Grid iterator. Iterates on every single node
-- in the `grid`. Passing __lx, ly, ex, ey__ arguments will iterate
-- only on nodes inside the bounding-rectangle delimited by those given coordinates.
-- @class function
-- @tparam[opt] int lx the leftmost x-coordinate of the rectangle. Default to the `grid` leftmost x-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ly the topmost y-coordinate of the rectangle. Default to the `grid` topmost y-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ex the rightmost x-coordinate of the rectangle. Default to the `grid` rightmost x-coordinate (see @{Grid:getBounds}).
-- @tparam[optchain] int ey the bottom-most y-coordinate of the rectangle. Default to the `grid` bottom-most y-coordinate (see @{Grid:getBounds}).
-- @treturn node a `node` on the collision map, upon each iteration step
-- @treturn int the iteration count
-- @usage
-- for node, count in myGrid:iter() do
-- print(node:getX(), node:getY(), count)
-- end
function Grid:iter(lx,ly,ex,ey)
local min_x = lx or self._min_x
local min_y = ly or self._min_y
local max_x = ex or self._max_x
local max_y = ey or self._max_y
local x, y
y = min_y
return function()
x = not x and min_x or x+1
if x > max_x then
x = min_x
y = y+1
end
if y > max_y then
y = nil
end
return self._nodes[y] and self._nodes[y][x] or self:getNodeAt(x,y)
end
end
--- Grid iterator. Iterates on each node along the outline (border) of a squared area
-- centered on the given node.
-- @tparam node node a given `node`
-- @tparam[opt] int radius the area radius (half-length). Defaults to __1__ when not given.
-- @treturn node a `node` at each iteration step
-- @usage
-- for node in myGrid:around(node, 2) do
-- ...
-- end
function Grid:around(node, radius)
local x, y = node._x, node._y
radius = radius or 1
local _around = Utils.around()
local _nodes = {}
repeat
local state, x, y = coroutine.resume(_around,x,y,radius)
local nodeAt = state and self:getNodeAt(x, y)
if nodeAt then _nodes[#_nodes+1] = nodeAt end
until (not state)
local _i = 0
return function()
_i = _i+1
return _nodes[_i]
end
end
--- Each transformation. Calls the given function on each `node` in the `grid`,
-- passing the `node` as the first argument to function __f__.
-- @class function
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function printNode(node)
-- print(node:getX(), node:getY())
-- end
-- myGrid:each(printNode)
function Grid:each(f,...)
for node in self:iter() do f(node,...) end
return self
end
--- Each (in range) transformation. Calls a function on each `node` in the range of a rectangle of cells,
-- passing the `node` as the first argument to function __f__.
-- @class function
-- @tparam int lx the leftmost x-coordinate coordinate of the rectangle
-- @tparam int ly the topmost y-coordinate of the rectangle
-- @tparam int ex the rightmost x-coordinate of the rectangle
-- @tparam int ey the bottom-most y-coordinate of the rectangle
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function printNode(node)
-- print(node:getX(), node:getY())
-- end
-- myGrid:eachRange(1,1,8,8,printNode)
function Grid:eachRange(lx,ly,ex,ey,f,...)
for node in self:iter(lx,ly,ex,ey) do f(node,...) end
return self
end
--- Map transformation.
-- Calls function __f(node,...)__ on each `node` in a given range, passing the `node` as the first arg to function __f__ and replaces
-- it with the returned value. Therefore, the function should return a `node`.
-- @class function
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function nothing(node)
-- return node
-- end
-- myGrid:imap(nothing)
function Grid:imap(f,...)
for node in self:iter() do
node = f(node,...)
end
return self
end
--- Map in range transformation.
-- Calls function __f(node,...)__ on each `node` in a rectangle range, passing the `node` as the first argument to the function and replaces
-- it with the returned value. Therefore, the function should return a `node`.
-- @class function
-- @tparam int lx the leftmost x-coordinate coordinate of the rectangle
-- @tparam int ly the topmost y-coordinate of the rectangle
-- @tparam int ex the rightmost x-coordinate of the rectangle
-- @tparam int ey the bottom-most y-coordinate of the rectangle
-- @tparam func f a function prototyped as __f(node,...)__
-- @tparam[opt] vararg ... args to be passed to function __f__
-- @treturn grid self (the calling `grid` itself, can be chained)
-- @usage
-- local function nothing(node)
-- return node
-- end
-- myGrid:imap(1,1,6,6,nothing)
function Grid:imapRange(lx,ly,ex,ey,f,...)
for node in self:iter(lx,ly,ex,ey) do
node = f(node,...)
end
return self
end
-- Specialized grids
-- Inits a preprocessed grid
function PreProcessGrid:new(map)
local newGrid = {}
newGrid._map = map
newGrid._nodes, newGrid._min_x, newGrid._max_x, newGrid._min_y, newGrid._max_y = Utils.arrayToNodes(newGrid._map)
newGrid._width = (newGrid._max_x-newGrid._min_x)+1
newGrid._height = (newGrid._max_y-newGrid._min_y)+1
newGrid._isAnnotated = {}
return setmetatable(newGrid,PreProcessGrid)
end
-- Inits a postprocessed grid
function PostProcessGrid:new(map)
local newGrid = {}
newGrid._map = map
newGrid._nodes = {}
newGrid._min_x, newGrid._max_x, newGrid._min_y, newGrid._max_y = Utils.getArrayBounds(newGrid._map)
newGrid._width = (newGrid._max_x-newGrid._min_x)+1
newGrid._height = (newGrid._max_y-newGrid._min_y)+1
newGrid._isAnnotated = {}
return setmetatable(newGrid,PostProcessGrid)
end
--- Returns the `node` at location [x,y].
-- @class function
-- @name Grid:getNodeAt
-- @tparam int x the x-coordinate coordinate
-- @tparam int y the y-coordinate coordinate
-- @treturn node a `node`
-- @usage local aNode = myGrid:getNodeAt(2,2)
-- Gets the node at location on a preprocessed grid
function PreProcessGrid:getNodeAt(x,y)
return self._nodes[y] and self._nodes[y][x] or nil
end
-- Gets the node at location on a postprocessed grid
function PostProcessGrid:getNodeAt(x,y)
if not x or not y then return end
if Utils.outOfRange(x,self._min_x,self._max_x) then return end
if Utils.outOfRange(y,self._min_y,self._max_y) then return end
if not self._nodes[y] then self._nodes[y] = {} end
if not self._nodes[y][x] then self._nodes[y][x] = Node:new(x,y) end
return self._nodes[y][x]
end
---------------------------------------------------------------------------------------
-- A* algorithm based on implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/search/astar.lua
---------------------------------------------------------------------------------------
-- Internalization
local ipairs = ipairs
-- Updates G-cost
local function computeCost(node, neighbour, finder, clearance)
local mCost = Heuristics.EUCLIDIAN(neighbour, node)
if node._g + mCost < neighbour._g then
neighbour._parent = node
neighbour._g = node._g + mCost
end
end
-- Updates vertex node-neighbour
local function updateVertex(finder, openList, node, neighbour, endNode, clearance, heuristic, overrideCostEval)
local oldG = neighbour._g
local cmpCost = overrideCostEval or computeCost
cmpCost(node, neighbour, finder, clearance)
if neighbour._g < oldG then
local nClearance = neighbour._clearance[finder._walkable]
local pushThisNode = clearance and nClearance and (nClearance >= clearance)
if (clearance and pushThisNode) or (not clearance) then
if neighbour._opened then neighbour._opened = false end
neighbour._h = heuristic(endNode, neighbour)
neighbour._f = neighbour._g + neighbour._h
openList:push(neighbour)
neighbour._opened = true
end
end
end
-- Calculates a path.
-- Returns the path from location `` to location ``.
local function ASTAR(finder, startNode, endNode, clearance, toClear, overrideHeuristic, overrideCostEval)
local heuristic = overrideHeuristic or finder._heuristic
local openList = heap()
startNode._g = 0
startNode._h = heuristic(endNode, startNode)
startNode._f = startNode._g + startNode._h
openList:push(startNode)
toClear[startNode] = true
startNode._opened = true
while not openList:empty() do
local node = openList:pop()
node._closed = true
if node == endNode then return node end
local neighbours = finder._grid:getNeighbours(node, finder._walkable, finder._allowDiagonal, finder._tunnel)
for i = 1,#neighbours do
local neighbour = neighbours[i]
if not neighbour._closed then
toClear[neighbour] = true
if not neighbour._opened then
neighbour._g = huge
neighbour._parent = nil
end
updateVertex(finder, openList, node, neighbour, endNode, clearance, heuristic, overrideCostEval)
end
end
end
return nil
end
---------------------------------------------------------------------------------------
-- Pathfinder class based on implementation by Ronald Yonaba
-- Original code here: https://github.com/Yonaba/Jumper/jumper/pathfinder.lua
---------------------------------------------------------------------------------------
local Finders = {
['ASTAR'] = ASTAR
}
-- Internalization
local pairs = pairs
local assert = assert
local type = type
local setmetatable, getmetatable = setmetatable, getmetatable
-- Will keep track of all nodes expanded during the search
-- to easily reset their properties for the next pathfinding call
local toClear = {}
--- Search modes. Refers to the search modes. In ORTHOGONAL mode, 4-directions are only possible when moving,
-- including North, East, West, South. In DIAGONAL mode, 8-directions are possible when moving,
-- including North, East, West, South and adjacent directions.
--
-- ORTHOGONAL
-- DIAGONAL
-- @mode Modes
-- @see Pathfinder:getModes
local searchModes = {['DIAGONAL'] = true, ['ORTHOGONAL'] = true}
-- Performs a traceback from the goal node to the start node
-- Only happens when the path was found
--- The `Pathfinder` class.
-- This class is callable.
-- Therefore,_ Pathfinder(...)
_acts as a shortcut to_ Pathfinder:new(...)
.
-- @type Pathfinder
Pathfinder = setmetatable({},{
__call = function(self,...)
return self:new(...)
end
})
Pathfinder.__index = Pathfinder
--- Inits a new `pathfinder`
-- @class function
-- @tparam grid grid a `grid`
-- @tparam[opt] string finderName the name of the `Finder` (search algorithm) to be used for search.
-- Defaults to `ASTAR` when not given (see @{Pathfinder:getFinders}).
-- @tparam[optchain] string|int|func walkable the value for __walkable__ nodes.
-- If this parameter is a function, it should be prototyped as __f(value)__, returning a boolean:
-- __true__ when value matches a __walkable__ `node`, __false__ otherwise.
-- @treturn pathfinder a new `pathfinder` instance
-- @usage
-- -- Example one
-- local finder = Pathfinder:new(myGrid, 'ASTAR', 0)
--
-- -- Example two
-- local function walkable(value)
-- return value > 0
-- end
-- local finder = Pathfinder(myGrid, 'JPS', walkable)
function Pathfinder:new(grid, finderName, walkable)
local newPathfinder = {}
setmetatable(newPathfinder, Pathfinder)
newPathfinder:setGrid(grid)
newPathfinder:setFinder(finderName)
newPathfinder:setWalkable(walkable)
newPathfinder:setMode('DIAGONAL')
newPathfinder:setHeuristic('MANHATTAN')
newPathfinder:setTunnelling(false)
return newPathfinder
end
--- Evaluates [clearance](http://aigamedev.com/open/tutorial/clearance-based-pathfinding/#TheTrueClearanceMetric)
-- for the whole `grid`. It should be called only once, unless the collision map or the
-- __walkable__ attribute changes. The clearance values are calculated and cached within the grid nodes.
-- @class function
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:annotateGrid()
function Pathfinder:annotateGrid()
--assert(self._walkable, 'Finder must implement a walkable value')
for x=self._grid._max_x,self._grid._min_x,-1 do
for y=self._grid._max_y,self._grid._min_y,-1 do
local node = self._grid:getNodeAt(x,y)
if self._grid:isWalkableAt(x,y,self._walkable) then
local nr = self._grid:getNodeAt(node._x+1, node._y)
local nrd = self._grid:getNodeAt(node._x+1, node._y+1)
local nd = self._grid:getNodeAt(node._x, node._y+1)
if nr and nrd and nd then
local m = nrd._clearance[self._walkable] or 0
m = (nd._clearance[self._walkable] or 0)0
-- end
function Pathfinder:setWalkable(walkable)
--assert(Assert.matchType(walkable,'stringintfunctionnil'),
-- ('Wrong argument #1. Expected \'string\', \'number\' or \'function\', got %s.'):format(type(walkable)))
self._walkable = walkable
self._grid._eval = type(self._walkable) == 'function'
return self
end
--- Gets the __walkable__ value or function.
-- @class function
-- @treturn string|int|func the `walkable` value or function
-- @usage local walkable = myFinder:getWalkable()
function Pathfinder:getWalkable()
return self._walkable
end
--- Defines the `finder`. It refers to the search algorithm used by the `pathfinder`.
-- Default finder is `ASTAR`. Use @{Pathfinder:getFinders} to get the list of available finders.
-- @class function
-- @tparam string finderName the name of the `finder` to be used for further searches.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage
-- --To use Breadth-First-Search
-- myFinder:setFinder('BFS')
-- @see Pathfinder:getFinders
function Pathfinder:setFinder(finderName)
if not finderName then
if not self._finder then
finderName = 'ASTAR'
else return
end
end
--assert(Finders[finderName],'Not a valid finder name!')
self._finder = finderName
return self
end
--- Returns the name of the `finder` being used.
-- @class function
-- @treturn string the name of the `finder` to be used for further searches.
-- @usage local finderName = myFinder:getFinder()
function Pathfinder:getFinder()
return self._finder
end
--- Returns the list of all available finders names.
-- @class function
-- @treturn {string,...} array of built-in finders names.
-- @usage
-- local finders = myFinder:getFinders()
-- for i, finderName in ipairs(finders) do
-- print(i, finderName)
-- end
function Pathfinder:getFinders()
return Utils.getKeys(Finders)
end
--- Sets a heuristic. This is a function internally used by the `pathfinder` to find the optimal path during a search.
-- Use @{Pathfinder:getHeuristics} to get the list of all available `heuristics`. One can also define
-- his own `heuristic` function.
-- @class function
-- @tparam func|string heuristic `heuristic` function, prototyped as __f(dx,dy)__ or as a `string`.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @see Pathfinder:getHeuristics
-- @see core.heuristics
-- @usage myFinder:setHeuristic('MANHATTAN')
function Pathfinder:setHeuristic(heuristic)
--assert(Heuristic[heuristic] or (type(heuristic) == 'function'),'Not a valid heuristic!')
self._heuristic = Heuristics[heuristic] or heuristic
return self
end
--- Returns the `heuristic` used. Returns the function itself.
-- @class function
-- @treturn func the `heuristic` function being used by the `pathfinder`
-- @see core.heuristics
-- @usage local h = myFinder:getHeuristic()
function Pathfinder:getHeuristic()
return self._heuristic
end
--- Gets the list of all available `heuristics`.
-- @class function
-- @treturn {string,...} array of heuristic names.
-- @see core.heuristics
-- @usage
-- local heur = myFinder:getHeuristic()
-- for i, heuristicName in ipairs(heur) do
-- ...
-- end
function Pathfinder:getHeuristics()
return Utils.getKeys(Heuristic)
end
--- Defines the search `mode`.
-- The default search mode is the `DIAGONAL` mode, which implies 8-possible directions when moving (north, south, east, west and diagonals).
-- In `ORTHOGONAL` mode, only 4-directions are allowed (north, south, east and west).
-- Use @{Pathfinder:getModes} to get the list of all available search modes.
-- @class function
-- @tparam string mode the new search `mode`.
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @see Pathfinder:getModes
-- @see Modes
-- @usage myFinder:setMode('ORTHOGONAL')
function Pathfinder:setMode(mode)
--assert(searchModes[mode],'Invalid mode')
self._allowDiagonal = (mode == 'DIAGONAL')
return self
end
--- Returns the search mode.
-- @class function
-- @treturn string the current search mode
-- @see Modes
-- @usage local mode = myFinder:getMode()
function Pathfinder:getMode()
return (self._allowDiagonal and 'DIAGONAL' or 'ORTHOGONAL')
end
--- Gets the list of all available search modes.
-- @class function
-- @treturn {string,...} array of search modes.
-- @see Modes
-- @usage local modes = myFinder:getModes()
-- for modeName in ipairs(modes) do
-- ...
-- end
function Pathfinder:getModes()
return Utils.getKeys(searchModes)
end
--- Enables tunnelling. Defines the ability for the `pathfinder` to tunnel through walls when heading diagonally.
-- This feature __is not compatible__ with Jump Point Search algorithm (i.e. enabling it will not affect Jump Point Search)
-- @class function
-- @tparam bool bool a boolean
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage myFinder:setTunnelling(true)
function Pathfinder:setTunnelling(bool)
--assert(Assert.isBool(bool), ('Wrong argument #1. Expected boolean, got %s'):format(type(bool)))
self._tunnel = bool
return self
end
--- Returns tunnelling feature state.
-- @class function
-- @treturn bool tunnelling feature actual state
-- @usage local isTunnellingEnabled = myFinder:getTunnelling()
function Pathfinder:getTunnelling()
return self._tunnel
end
--- Calculates a `path`. Returns the `path` from location __[startX, startY]__ to location __[endX, endY]__.
-- Both locations must exist on the collision map. The starting location can be unwalkable.
-- @class function
-- @tparam int startX the x-coordinate for the starting location
-- @tparam int startY the y-coordinate for the starting location
-- @tparam int endX the x-coordinate for the goal location
-- @tparam int endY the y-coordinate for the goal location
-- @tparam int clearance the amount of clearance (i.e the pathing agent size) to consider
-- @treturn path a path (array of nodes) when found, otherwise nil
-- @usage local path = myFinder:getPath(1,1,5,5)
function Pathfinder:getPath(startX, startY, endX, endY, clearance)
self:reset()
local startNode = self._grid:getNodeAt(startX, startY)
local endNode = self._grid:getNodeAt(endX, endY)
--assert(startNode, ('Invalid location [%d, %d]'):format(startX, startY))
--assert(endNode and self._grid:isWalkableAt(endX, endY),
-- ('Invalid or unreachable location [%d, %d]'):format(endX, endY))
local _endNode = Finders[self._finder](self, startNode, endNode, clearance, toClear)
if _endNode then
return Utils.traceBackPath(self, _endNode, startNode)
end
return nil
end
--- Resets the `pathfinder`. This function is called internally between successive pathfinding calls, so you should not
-- use it explicitely, unless under specific circumstances.
-- @class function
-- @treturn pathfinder self (the calling `pathfinder` itself, can be chained)
-- @usage local path, len = myFinder:getPath(1,1,5,5)
function Pathfinder:reset()
for node in pairs(toClear) do node:reset() end
toClear = {}
return self
end
-- Returns Pathfinder class
Pathfinder._VERSION = _VERSION
Pathfinder._RELEASEDATE = _RELEASEDATE