local function spawn_maze(name, param) local t1 = os.clock() math.randomseed(os.time()) local found, _, maze_size_x_st, maze_size_y_st, maze_size_l_st, material_floor, material_wall, material_ceiling = param:find("(%d+)%s+(%d+)%s+(%d+)%s+([^%s]+)%s+([^%s]+)%s+([^%s]+)") local min_size = 11 local maze_size_x = tonumber(maze_size_x_st) maze_size_x = maze_size_x or 20 maze_size_x = math.max(maze_size_x, min_size) local maze_size_y = tonumber(maze_size_y_st) maze_size_y = maze_size_y or 20 maze_size_y = math.max(maze_size_y, min_size) local maze_size_l = tonumber(maze_size_l_st) maze_size_l = maze_size_l or 3 maze_size_l = math.max(maze_size_l, 1) -- check if chosen material exists if not minetest.registered_nodes[material_floor] then material_floor = "default:cobble" end material_floor = material_floor or "default:cobble" if not minetest.registered_nodes[material_wall] then material_wall = "default:cobble" end material_wall = material_wall or "default:cobble" if not minetest.registered_nodes[material_ceiling] then material_ceiling = "default:cobble" end material_ceiling = material_ceiling or "default:cobble" minetest.chat_send_player(name, "Try to build " .. maze_size_x .. " * " .. maze_size_y .. " * " .. maze_size_l .. " maze. F:" .. material_floor .. " W:" .. material_wall .. " C:" .. material_ceiling) local maze = {} for l = 0, maze_size_l-1 do maze[l] = {} for x = 0, maze_size_x-1 do maze[l][x] = {} for y = 0, maze_size_y-1 do maze[l][x][y] = true -- everywhere walls end end end -- create maze map local start_x = 0 local start_y = math.floor(maze_size_y/2) local start_l = 0 local pos_x = start_x local pos_y = start_y local pos_l = start_l maze[pos_l][pos_x][pos_y] = false -- the entrance local moves = {} local updowns = {} local possible_ways = {} local direction = "" local pos = {x = 0, y = 0, l = 0} local forward = true local return_count = 0 local treasure_x = 0 local treasure_y = 0 local treasure_l = 0 local dead_end = {} table.insert(moves, {x = pos_x, y = pos_y, l = pos_l}) -- print(#moves .. " " .. moves[1].x .. " " .. moves[1].y) repeat possible_ways = {} -- is D possible? if pos_x > 1 and pos_x < maze_size_x - 1 and pos_y > 1 and pos_y < maze_size_y - 1 and pos_l < maze_size_l - 1 and maze[pos_l + 1][pos_x - 1][pos_y - 1] and maze[pos_l + 1][pos_x - 1][pos_y] and maze[pos_l + 1][pos_x - 1][pos_y + 1] and maze[pos_l + 1][pos_x][pos_y - 1] and maze[pos_l + 1][pos_x][pos_y] and maze[pos_l + 1][pos_x][pos_y + 2] and maze[pos_l + 1][pos_x + 1][pos_y - 1] and maze[pos_l + 1][pos_x + 1][pos_y] and maze[pos_l + 1][pos_x + 1][pos_y + 1] then table.insert(possible_ways, "D") end -- is U possible? if pos_x > 1 and pos_x < maze_size_x - 1 and pos_y > 1 and pos_y < maze_size_y - 1 and pos_l > 0 and maze[pos_l - 1][pos_x - 1][pos_y - 1] and maze[pos_l - 1][pos_x - 1][pos_y] and maze[pos_l - 1][pos_x - 1][pos_y + 1] and maze[pos_l - 1][pos_x][pos_y - 1] and maze[pos_l - 1][pos_x][pos_y] and maze[pos_l - 1][pos_x][pos_y + 2] and maze[pos_l - 1][pos_x + 1][pos_y - 1] and maze[pos_l - 1][pos_x + 1][pos_y] and maze[pos_l - 1][pos_x + 1][pos_y + 1] then table.insert(possible_ways, "U") end -- is N possible? if pos_y - 2 >= 0 and pos_x - 1 >= 0 and pos_x + 1 < maze_size_x and maze[pos_l][pos_x][pos_y - 1] and -- N is wall maze[pos_l][pos_x][pos_y - 2] and -- N from N is wall maze[pos_l][pos_x - 1][pos_y - 2] and -- NW from N is wall maze[pos_l][pos_x + 1][pos_y - 2] and -- NE from N is wall maze[pos_l][pos_x - 1][pos_y - 1] and -- W from N is wall maze[pos_l][pos_x + 1][pos_y - 1] -- E from N is wall then table.insert(possible_ways, "N") table.insert(possible_ways, "N") -- twice as possible as U and D end -- is E possible? if pos_x + 2 < maze_size_x and pos_y - 1 >= 0 and pos_y + 1 < maze_size_y and maze[pos_l][pos_x + 1][pos_y] and -- E is wall maze[pos_l][pos_x + 2][pos_y] and -- E from E is wall maze[pos_l][pos_x + 2][pos_y - 1] and -- NE from E is wall maze[pos_l][pos_x + 2][pos_y + 1] and -- SE from E is wall maze[pos_l][pos_x + 1][pos_y - 1] and -- N from E is wall maze[pos_l][pos_x + 1][pos_y + 1] -- S from E is wall then table.insert(possible_ways, "E") table.insert(possible_ways, "E") -- twice as possible as U and D end -- is S possible? if pos_y + 2 < maze_size_y and pos_x - 1 >= 0 and pos_x + 1 < maze_size_x and maze[pos_l][pos_x][pos_y + 1] and -- S is wall maze[pos_l][pos_x][pos_y + 2] and -- S from S is wall maze[pos_l][pos_x - 1][pos_y + 2] and -- SW from S is wall maze[pos_l][pos_x + 1][pos_y + 2] and -- SE from S is wall maze[pos_l][pos_x - 1][pos_y + 1] and -- W from S is wall maze[pos_l][pos_x + 1][pos_y + 1] -- E from S is wall then table.insert(possible_ways, "S") table.insert(possible_ways, "S") -- twice as possible as U and D end -- is W possible? if pos_x - 2 >= 0 and pos_y - 1 >= 0 and pos_y + 1 < maze_size_y and maze[pos_l][pos_x - 1][pos_y] and -- W is wall maze[pos_l][pos_x - 2][pos_y] and -- W from W is wall maze[pos_l][pos_x - 2][pos_y - 1] and -- NW from W is wall maze[pos_l][pos_x - 2][pos_y + 1] and -- SW from W is wall maze[pos_l][pos_x - 1][pos_y - 1] and -- N from W is wall maze[pos_l][pos_x - 1][pos_y + 1] -- S from W is wall then table.insert(possible_ways, "W") table.insert(possible_ways, "W") -- twice as possible as U and D end if #possible_ways > 0 then forward = true direction = possible_ways[math.random(# possible_ways)] if direction == "N" then pos_y = pos_y - 1 elseif direction == "E" then pos_x = pos_x + 1 elseif direction == "S" then pos_y = pos_y + 1 elseif direction == "W" then pos_x = pos_x - 1 elseif direction == "D" then table.insert(updowns, {x = pos_x, y = pos_y, l = pos_l}) -- mark way down pos_l = pos_l + 1 elseif direction == "U" then pos_l = pos_l - 1 table.insert(updowns, {x = pos_x, y = pos_y, l = pos_l}) -- mark way up = down from level above end table.insert(moves, {x = pos_x, y = pos_y, l = pos_l}) maze[pos_l][pos_x][pos_y] = false -- print(# possible_ways .. " " .. direction) else -- there is no possible way forward if forward then -- the last step was forward, now back, so we're in a dead end -- mark dead end for possible braid if not maze[pos_l][pos_x - 1][pos_y] then -- dead end to E, only way is W table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 1, dy = 0}) elseif not maze[pos_l][pos_x + 1][pos_y] then -- dead end to W, only way is E table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = -1, dy = 0}) elseif not maze[pos_l][pos_x][pos_y - 1] then -- dead end to S, only way is N table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 0, dy = 1}) elseif not maze[pos_l][pos_x][pos_y + 1] then -- dead end to N, only way is S table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 0, dy = -1}) end -- third time returning is location of treasure, if there are three ways back else it's somewhere before if return_count <= 3 then -- print("place treasure") treasure_x = pos_x treasure_y = pos_y treasure_l = pos_l end return_count = return_count + 1 forward = false end pos = table.remove(moves) pos_x = pos.x pos_y = pos.y pos_l = pos.l -- print("get back to " .. pos_x .. " / " .. pos_y .. " / " .. pos_l .. " to find another way from there") end until pos_x == start_x and pos_y == start_y -- create partial braid maze, about 20% for _, braid_pos in pairs(dead_end) do if braid_pos.x ~= treasure_x or braid_pos.y ~= treasure_y or braid_pos.l ~= treasure_l then -- treasure remains in dead end -- print(braid_pos.x.."/"..braid_pos.y.."/"..braid_pos.l.." "..braid_pos.dx.."/"..braid_pos.dy) local x = braid_pos.x + braid_pos.dx * 2 local y = braid_pos.y + braid_pos.dy * 2 if math.random(5) == 1 and x > 0 and x < maze_size_x - 1 and y > 0 and y < maze_size_y - 1 and not maze[braid_pos.l][x][y] then -- remove wall if behind is corridor with 20% chance maze[braid_pos.l][braid_pos.x + braid_pos.dx][braid_pos.y + braid_pos.dy] = false print("removed "..braid_pos.l.."/"..braid_pos.x + braid_pos.dx.."/"..braid_pos.y + braid_pos.dy) end end end -- create exit on opposite end of maze and make sure it is reachable local exit_x = maze_size_x - 1 -- exit always on opposite side of maze local exit_y = math.random(maze_size_y - 3) + 1 local exit_l = math.random(maze_size_l) - 1 local exit_reachable = false repeat maze[exit_l][exit_x][exit_y] = false exit_reachable = not maze[exit_l][exit_x - 1][exit_y] or not maze[exit_l][exit_x][exit_y - 1] or not maze[exit_l][exit_x][exit_y + 1] exit_x = exit_x - 1 until exit_reachable local player = minetest.get_player_by_name(name) -- get transform factors to place the maze in "look_dir" of player local player_dir = player:get_look_dir() local cosine = 1 local sine = 0 if math.abs(player_dir.x) > math.abs(player_dir.z) then if player_dir.x <= 0 then cosine = -1 end else cosine = 0 if player_dir.z < 0 then sine = -1 else sine = 1 end end -- print (cosine .. " " .. sine) local playerpos = vector.round(player:getpos()) -- build maze in minetest-world local min, max local tab = {} for l = maze_size_l-1, 0, -1 do for y = 0, maze_size_y-1 do local line if l == 0 and y == start_y then line = "<-" else line = " " end for x = 0, maze_size_x - 1 do local ladder_direction = 2 -- rotate the maze in players view-direction and move it to his position local change_level_down = false local change_level_up = false for i, v in ipairs(updowns) do if v.x == x and v.y == y then if v.l == l then change_level_down = true -- find direction for the ladders ladder_direction = 2 if maze[l][x - 1][y] and maze[l + 1][x - 1][y] then ladder_direction = 3 end if maze[l][x + 1][y] and maze[l + 1][x + 1][y] then ladder_direction = 2 end if maze[l][x][y - 1] and maze[l + 1][x][y - 1] then ladder_direction = 5 end if maze[l][x][y + 1] and maze[l + 1][x][y + 1] then ladder_direction = 4 end elseif v.l == l - 1 then change_level_up = true -- find direction for the ladders if maze[l][x][y + 1] then ladder_direction = 4 elseif maze[l][x][y - 1] then ladder_direction = 5 elseif maze[l][x + 1][y] then ladder_direction = 2 elseif maze[l][x - 1][y] then ladder_direction = 3 else ladder_direction = 2 end end end end -- rotate direction for the ladders if sine == 1 then if ladder_direction == 2 then ladder_direction = 4 elseif ladder_direction == 3 then ladder_direction = 5 elseif ladder_direction == 4 then ladder_direction = 3 elseif ladder_direction == 5 then ladder_direction = 2 end elseif sine == -1 then if ladder_direction == 2 then ladder_direction = 5 elseif ladder_direction == 3 then ladder_direction = 4 elseif ladder_direction == 4 then ladder_direction = 2 elseif ladder_direction == 5 then ladder_direction = 3 end elseif cosine == -1 then if ladder_direction == 2 then ladder_direction = 3 elseif ladder_direction == 3 then ladder_direction = 2 elseif ladder_direction == 4 then ladder_direction = 5 elseif ladder_direction == 5 then ladder_direction = 4 end end local pos = vector.add(playerpos, { x = cosine * (x + 2) - sine * (y - start_y), z = sine * (x + 2) + cosine * (y - start_y), y = - 1 - 3 * l }) if not min then min = vector.new(pos) max = vector.new(pos) end min.x = math.min(min.x, pos.x) min.y = math.min(min.y, pos.y) min.z = math.min(min.z, pos.z) max.x = math.max(max.x, pos.x) max.z = math.max(max.z, pos.z) if not change_level_down then table.insert(tab, {{pos.x, pos.y, pos.z}, 1}) end pos.y = pos.y + 1 local letter = " " if maze[l][x][y] then --line = "X" .. line letter = "██" table.insert(tab, {{pos.x, pos.y, pos.z}, 2}) pos.y = pos.y + 1 table.insert(tab, {{pos.x, pos.y, pos.z}, 2}) else -- if change_level_down then minetest.add_node(pos, {name = "default:ladder", param2 = ladder_direction}) end if change_level_up then table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction}) letter = "╞╡" else table.insert(tab, {{pos.x, pos.y, pos.z}, 0}) end pos.y = pos.y + 1 if change_level_up then table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction}) elseif change_level_down then table.insert(tab, {{pos.x, pos.y, pos.z}, 5, ladder_direction}) letter = "☀▤" elseif math.random(20) == 1 then table.insert(tab, {{pos.x, pos.y, pos.z}, 5}) letter = "☀ " else table.insert(tab, {{pos.x, pos.y, pos.z}, 0}) end end line = letter .. line pos.y = pos.y + 1 if change_level_up then table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction}) else table.insert(tab, {{pos.x, pos.y, pos.z}, 3}) end max.y = math.max(max.y, pos.y) end if l == exit_l and y == exit_y then line = "<-" .. line else line = " " .. line end print(line) end end local c = { [0] = minetest.get_content_id("air"), minetest.get_content_id(material_floor), minetest.get_content_id(material_wall), minetest.get_content_id(material_ceiling), minetest.get_content_id("default:ladder"), minetest.get_content_id("default:torch"), } local manip = minetest.get_voxel_manip() local emerged_pos1, emerged_pos2 = manip:read_from_map(min, max) local area = VoxelArea:new({MinEdge=emerged_pos1, MaxEdge=emerged_pos2}) local nodes = manip:get_data() local param2s = manip:get_param2_data() for _,p in pairs(tab) do local p, typ, par = unpack(p) p = area:index(unpack(p)) nodes[p] = c[typ] if par then param2s[p] = par end end manip:set_data(nodes) manip:set_param2_data(param2s) manip:write_to_map() manip:update_map() -- if exit is underground, dig a hole to surface local ladder_direction = 2 if cosine == -1 then ladder_direction = 3 end if sine == -1 then ladder_direction = 5 end if sine == 1 then ladder_direction = 4 end local pos = vector.add(playerpos, { x = cosine * (maze_size_x + 2) - sine * (exit_y - start_y), z = sine * (maze_size_x + 2) + cosine * (exit_y - start_y), y = - 3 * exit_l }) local is_air = minetest.get_node_or_nil(pos) while is_air and is_air.name ~= "air" do minetest.add_node(pos, {name = "default:ladder", param2 = ladder_direction}) pos.y = pos.y + 1 is_air = minetest.get_node_or_nil(pos) end -- place a chest as treasure local items = 0 local item_list = {} for name in pairs(minetest.registered_items) do if string.find(name, "default:") then items = items + 1 item_list[items] = name end end pos = vector.add(playerpos, { x = cosine * (treasure_x + 2) - sine * (treasure_y - start_y), z = sine * (treasure_x + 2) + cosine * (treasure_y - start_y), y = - 3 * treasure_l }) minetest.add_node(pos, {name = "default:chest"}) local meta = minetest.get_meta(pos) local inv = meta:get_inventory() for _,name in pairs(item_list) do if math.random(items / 5) == 1 then inv:add_item('main', name) end end -- place a closer-stone to seal the entrance and exit minetest.add_node(vector.add(playerpos, { x = cosine * (start_x + 2), z = sine * (start_x + 2), y = - 3 * start_l - 1 }), {name = "maze:closer"}) minetest.add_node(vector.add(playerpos, { x = cosine * (maze_size_x + 1) - sine * (exit_y - start_y), z = sine * (maze_size_x + 1) + cosine * (exit_y - start_y), y = - 3 * exit_l - 1 }), {name = "maze:closer"}) print(string.format("[maze] done after ca. %.2fs", os.clock() - t1)) end minetest.register_chatcommand("maze", { params = " <#floors> ", privs = {server = true}, description = "Create a maze near your position", func = spawn_maze }) local maze_closer = {} -- list of all closer stones local closer_available = false -- closer stone definition minetest.register_node("maze:closer", { description = "Closestone", tiles = {"default_cobble.png"}, drop = "", material = { diggability = "not"}, on_construct = function(pos) maze_closer[#maze_closer+1] = pos closer_available = true end, }) -- detect player walk over closer stone (abm isn't fast enough) local function playerwalk() for _,player in pairs(minetest.get_connected_players()) do local player_pos = player:getpos() for _,pos in pairs(maze_closer) do local dist = math.sqrt( (pos.x - player_pos.x)^2 + (pos.y - (player_pos.y - 0.5))^2 + (pos.z - player_pos.z)^2 ) if dist<3 then -- 2.2 would be enough, just make sure local meta = minetest.get_meta(pos) if dist<0.5 then meta:set_string("trap", "triggered") elseif dist > 1 then -- 0.71 would be enough, at least one node away if meta:get_string("trap") == "triggered" then meta:set_string("trap", "") for i = 0,2 do minetest.add_node({x = pos.x, y = pos.y+i, z = pos.z},{name="default:cobble"}) end minetest.sound_play("default_chest_locked", {pos = pos}) end end end end end end local function do_step() local tstep if closer_available then tstep = 0 playerwalk() else tstep = 2 end minetest.after(tstep, do_step) end minetest.after(5, do_step) -- create list of all closer stones (walk over detection now in globalstep, because abm isn't called often enough minetest.register_abm({ nodenames = {"maze:closer"}, interval = 5, chance = 1, action = function(pos) for _,closer_pos in pairs(maze_closer) do if vector.equals(pos, closer_pos) then return end end maze_closer[#maze_closer+1] = pos closer_available = true end, }) minetest.log("action", "[maze] loaded.")