maze/init.lua

540 lines
18 KiB
Lua
Executable File

local function spawn_maze(name, param)
local t1 = os.clock()
math.randomseed(os.time())
local found, _, maze_size_x_st, maze_size_y_st, maze_size_l_st, material_floor, material_wall, material_ceiling = param:find("(%d+)%s+(%d+)%s+(%d+)%s+([^%s]+)%s+([^%s]+)%s+([^%s]+)")
local min_size = 11
local maze_size_x = tonumber(maze_size_x_st)
maze_size_x = maze_size_x or 20
maze_size_x = math.max(maze_size_x, min_size)
local maze_size_y = tonumber(maze_size_y_st)
maze_size_y = maze_size_y or 20
maze_size_y = math.max(maze_size_y, min_size)
local maze_size_l = tonumber(maze_size_l_st)
maze_size_l = maze_size_l or 3
maze_size_l = math.max(maze_size_l, 1)
-- check if chosen material exists
if not minetest.registered_nodes[material_floor] then
material_floor = "default:cobble"
end
material_floor = material_floor or "default:cobble"
if not minetest.registered_nodes[material_wall] then
material_wall = "default:cobble"
end
material_wall = material_wall or "default:cobble"
if not minetest.registered_nodes[material_ceiling] then
material_ceiling = "default:cobble"
end
material_ceiling = material_ceiling or "default:cobble"
minetest.chat_send_player(name, "Try to build " .. maze_size_x .. " * " .. maze_size_y .. " * " .. maze_size_l .. " maze. F:" .. material_floor .. " W:" .. material_wall .. " C:" .. material_ceiling)
local maze = {}
for l = 0, maze_size_l-1 do
maze[l] = {}
for x = 0, maze_size_x-1 do
maze[l][x] = {}
for y = 0, maze_size_y-1 do
maze[l][x][y] = true -- everywhere walls
end
end
end
-- create maze map
local start_x = 0
local start_y = math.floor(maze_size_y/2)
local start_l = 0
local pos_x = start_x
local pos_y = start_y
local pos_l = start_l
maze[pos_l][pos_x][pos_y] = false -- the entrance
local moves = {}
local updowns = {}
local possible_ways = {}
local direction = ""
local pos = {x = 0, y = 0, l = 0}
local forward = true
local return_count = 0
local treasure_x = 0
local treasure_y = 0
local treasure_l = 0
local dead_end = {}
table.insert(moves, {x = pos_x, y = pos_y, l = pos_l})
-- print(#moves .. " " .. moves[1].x .. " " .. moves[1].y)
repeat
possible_ways = {}
-- is D possible?
if
pos_x > 1 and pos_x < maze_size_x - 1 and pos_y > 1 and pos_y < maze_size_y - 1 and
pos_l < maze_size_l - 1 and
maze[pos_l + 1][pos_x - 1][pos_y - 1] and
maze[pos_l + 1][pos_x - 1][pos_y] and
maze[pos_l + 1][pos_x - 1][pos_y + 1] and
maze[pos_l + 1][pos_x][pos_y - 1] and
maze[pos_l + 1][pos_x][pos_y] and
maze[pos_l + 1][pos_x][pos_y + 2] and
maze[pos_l + 1][pos_x + 1][pos_y - 1] and
maze[pos_l + 1][pos_x + 1][pos_y] and
maze[pos_l + 1][pos_x + 1][pos_y + 1]
then
table.insert(possible_ways, "D")
end
-- is U possible?
if
pos_x > 1 and pos_x < maze_size_x - 1 and pos_y > 1 and pos_y < maze_size_y - 1 and
pos_l > 0 and
maze[pos_l - 1][pos_x - 1][pos_y - 1] and
maze[pos_l - 1][pos_x - 1][pos_y] and
maze[pos_l - 1][pos_x - 1][pos_y + 1] and
maze[pos_l - 1][pos_x][pos_y - 1] and
maze[pos_l - 1][pos_x][pos_y] and
maze[pos_l - 1][pos_x][pos_y + 2] and
maze[pos_l - 1][pos_x + 1][pos_y - 1] and
maze[pos_l - 1][pos_x + 1][pos_y] and
maze[pos_l - 1][pos_x + 1][pos_y + 1]
then
table.insert(possible_ways, "U")
end
-- is N possible?
if
pos_y - 2 >= 0 and pos_x - 1 >= 0 and pos_x + 1 < maze_size_x and
maze[pos_l][pos_x][pos_y - 1] and -- N is wall
maze[pos_l][pos_x][pos_y - 2] and -- N from N is wall
maze[pos_l][pos_x - 1][pos_y - 2] and -- NW from N is wall
maze[pos_l][pos_x + 1][pos_y - 2] and -- NE from N is wall
maze[pos_l][pos_x - 1][pos_y - 1] and -- W from N is wall
maze[pos_l][pos_x + 1][pos_y - 1] -- E from N is wall
then
table.insert(possible_ways, "N")
table.insert(possible_ways, "N") -- twice as possible as U and D
end
-- is E possible?
if
pos_x + 2 < maze_size_x and pos_y - 1 >= 0 and pos_y + 1 < maze_size_y and
maze[pos_l][pos_x + 1][pos_y] and -- E is wall
maze[pos_l][pos_x + 2][pos_y] and -- E from E is wall
maze[pos_l][pos_x + 2][pos_y - 1] and -- NE from E is wall
maze[pos_l][pos_x + 2][pos_y + 1] and -- SE from E is wall
maze[pos_l][pos_x + 1][pos_y - 1] and -- N from E is wall
maze[pos_l][pos_x + 1][pos_y + 1] -- S from E is wall
then
table.insert(possible_ways, "E")
table.insert(possible_ways, "E") -- twice as possible as U and D
end
-- is S possible?
if
pos_y + 2 < maze_size_y and pos_x - 1 >= 0 and pos_x + 1 < maze_size_x and
maze[pos_l][pos_x][pos_y + 1] and -- S is wall
maze[pos_l][pos_x][pos_y + 2] and -- S from S is wall
maze[pos_l][pos_x - 1][pos_y + 2] and -- SW from S is wall
maze[pos_l][pos_x + 1][pos_y + 2] and -- SE from S is wall
maze[pos_l][pos_x - 1][pos_y + 1] and -- W from S is wall
maze[pos_l][pos_x + 1][pos_y + 1] -- E from S is wall
then
table.insert(possible_ways, "S")
table.insert(possible_ways, "S") -- twice as possible as U and D
end
-- is W possible?
if
pos_x - 2 >= 0 and pos_y - 1 >= 0 and pos_y + 1 < maze_size_y and
maze[pos_l][pos_x - 1][pos_y] and -- W is wall
maze[pos_l][pos_x - 2][pos_y] and -- W from W is wall
maze[pos_l][pos_x - 2][pos_y - 1] and -- NW from W is wall
maze[pos_l][pos_x - 2][pos_y + 1] and -- SW from W is wall
maze[pos_l][pos_x - 1][pos_y - 1] and -- N from W is wall
maze[pos_l][pos_x - 1][pos_y + 1] -- S from W is wall
then
table.insert(possible_ways, "W")
table.insert(possible_ways, "W") -- twice as possible as U and D
end
if #possible_ways > 0 then
forward = true
direction = possible_ways[math.random(# possible_ways)]
if direction == "N" then
pos_y = pos_y - 1
elseif direction == "E" then
pos_x = pos_x + 1
elseif direction == "S" then
pos_y = pos_y + 1
elseif direction == "W" then
pos_x = pos_x - 1
elseif direction == "D" then
table.insert(updowns, {x = pos_x, y = pos_y, l = pos_l}) -- mark way down
pos_l = pos_l + 1
elseif direction == "U" then
pos_l = pos_l - 1
table.insert(updowns, {x = pos_x, y = pos_y, l = pos_l}) -- mark way up = down from level above
end
table.insert(moves, {x = pos_x, y = pos_y, l = pos_l})
maze[pos_l][pos_x][pos_y] = false
-- print(# possible_ways .. " " .. direction)
else -- there is no possible way forward
if forward then -- the last step was forward, now back, so we're in a dead end
-- mark dead end for possible braid
if not maze[pos_l][pos_x - 1][pos_y] then -- dead end to E, only way is W
table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 1, dy = 0})
elseif not maze[pos_l][pos_x + 1][pos_y] then -- dead end to W, only way is E
table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = -1, dy = 0})
elseif not maze[pos_l][pos_x][pos_y - 1] then -- dead end to S, only way is N
table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 0, dy = 1})
elseif not maze[pos_l][pos_x][pos_y + 1] then -- dead end to N, only way is S
table.insert(dead_end, {x = pos_x, y = pos_y, l = pos_l, dx = 0, dy = -1})
end
-- third time returning is location of treasure, if there are three ways back else it's somewhere before
if return_count <= 3 then
-- print("place treasure")
treasure_x = pos_x
treasure_y = pos_y
treasure_l = pos_l
end
return_count = return_count + 1
forward = false
end
pos = table.remove(moves)
pos_x = pos.x
pos_y = pos.y
pos_l = pos.l
-- print("get back to " .. pos_x .. " / " .. pos_y .. " / " .. pos_l .. " to find another way from there")
end
until pos_x == start_x
and pos_y == start_y
-- create partial braid maze, about 20%
for _, braid_pos in pairs(dead_end) do
if braid_pos.x ~= treasure_x
or braid_pos.y ~= treasure_y
or braid_pos.l ~= treasure_l then -- treasure remains in dead end
-- print(braid_pos.x.."/"..braid_pos.y.."/"..braid_pos.l.." "..braid_pos.dx.."/"..braid_pos.dy)
local x = braid_pos.x + braid_pos.dx * 2
local y = braid_pos.y + braid_pos.dy * 2
if math.random(5) == 1
and x > 0
and x < maze_size_x - 1
and y > 0
and y < maze_size_y - 1
and not maze[braid_pos.l][x][y] then
-- remove wall if behind is corridor with 20% chance
maze[braid_pos.l][braid_pos.x + braid_pos.dx][braid_pos.y + braid_pos.dy] = false
print("removed "..braid_pos.l.."/"..braid_pos.x + braid_pos.dx.."/"..braid_pos.y + braid_pos.dy)
end
end
end
-- create exit on opposite end of maze and make sure it is reachable
local exit_x = maze_size_x - 1 -- exit always on opposite side of maze
local exit_y = math.random(maze_size_y - 3) + 1
local exit_l = math.random(maze_size_l) - 1
local exit_reachable = false
repeat
maze[exit_l][exit_x][exit_y] = false
exit_reachable = not maze[exit_l][exit_x - 1][exit_y] or not maze[exit_l][exit_x][exit_y - 1] or not maze[exit_l][exit_x][exit_y + 1]
exit_x = exit_x - 1
until exit_reachable
local player = minetest.get_player_by_name(name)
-- get transform factors to place the maze in "look_dir" of player
local player_dir = player:get_look_dir()
local cosine = 1
local sine = 0
if math.abs(player_dir.x) > math.abs(player_dir.z) then
if player_dir.x <= 0 then
cosine = -1
end
else
cosine = 0
if player_dir.z < 0 then
sine = -1
else
sine = 1
end
end
-- print (cosine .. " " .. sine)
local playerpos = vector.round(player:getpos())
-- build maze in minetest-world
local min, max
local tab = {}
for l = maze_size_l-1, 0, -1 do
for y = 0, maze_size_y-1 do
local line
if l == 0
and y == start_y then
line = "<-"
else
line = " "
end
for x = 0, maze_size_x - 1 do
local ladder_direction = 2
-- rotate the maze in players view-direction and move it to his position
local change_level_down = false
local change_level_up = false
for i, v in ipairs(updowns) do
if v.x == x
and v.y == y then
if v.l == l then
change_level_down = true
-- find direction for the ladders
ladder_direction = 2
if maze[l][x - 1][y] and maze[l + 1][x - 1][y] then ladder_direction = 3 end
if maze[l][x + 1][y] and maze[l + 1][x + 1][y] then ladder_direction = 2 end
if maze[l][x][y - 1] and maze[l + 1][x][y - 1] then ladder_direction = 5 end
if maze[l][x][y + 1] and maze[l + 1][x][y + 1] then ladder_direction = 4 end
elseif v.l == l - 1 then
change_level_up = true
-- find direction for the ladders
if maze[l][x][y + 1] then
ladder_direction = 4
elseif maze[l][x][y - 1] then
ladder_direction = 5
elseif maze[l][x + 1][y] then
ladder_direction = 2
elseif maze[l][x - 1][y] then
ladder_direction = 3
else
ladder_direction = 2
end
end
end
end
-- rotate direction for the ladders
if sine == 1 then
if ladder_direction == 2 then ladder_direction = 4
elseif ladder_direction == 3 then ladder_direction = 5
elseif ladder_direction == 4 then ladder_direction = 3
elseif ladder_direction == 5 then ladder_direction = 2 end
elseif sine == -1 then
if ladder_direction == 2 then ladder_direction = 5
elseif ladder_direction == 3 then ladder_direction = 4
elseif ladder_direction == 4 then ladder_direction = 2
elseif ladder_direction == 5 then ladder_direction = 3 end
elseif cosine == -1 then
if ladder_direction == 2 then ladder_direction = 3
elseif ladder_direction == 3 then ladder_direction = 2
elseif ladder_direction == 4 then ladder_direction = 5
elseif ladder_direction == 5 then ladder_direction = 4 end
end
local pos = vector.add(playerpos, {
x = cosine * (x + 2) - sine * (y - start_y),
z = sine * (x + 2) + cosine * (y - start_y),
y = - 1 - 3 * l
})
if not min then
min = vector.new(pos)
max = vector.new(pos)
end
min.x = math.min(min.x, pos.x)
min.y = math.min(min.y, pos.y)
min.z = math.min(min.z, pos.z)
max.x = math.max(max.x, pos.x)
max.z = math.max(max.z, pos.z)
if not change_level_down then
table.insert(tab, {{pos.x, pos.y, pos.z}, 1})
end
pos.y = pos.y + 1
local letter = " "
if maze[l][x][y] then
--line = "X" .. line
letter = "██"
table.insert(tab, {{pos.x, pos.y, pos.z}, 2})
pos.y = pos.y + 1
table.insert(tab, {{pos.x, pos.y, pos.z}, 2})
else
-- if change_level_down then minetest.add_node(pos, {name = "default:ladder", param2 = ladder_direction}) end
if change_level_up then
table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction})
letter = "╞╡"
else
table.insert(tab, {{pos.x, pos.y, pos.z}, 0})
end
pos.y = pos.y + 1
if change_level_up then
table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction})
elseif change_level_down then
table.insert(tab, {{pos.x, pos.y, pos.z}, 5, ladder_direction})
letter = "☀▤"
elseif math.random(20) == 1 then
table.insert(tab, {{pos.x, pos.y, pos.z}, 5})
letter = ""
else
table.insert(tab, {{pos.x, pos.y, pos.z}, 0})
end
end
line = letter .. line
pos.y = pos.y + 1
if change_level_up then
table.insert(tab, {{pos.x, pos.y, pos.z}, 4, ladder_direction})
else
table.insert(tab, {{pos.x, pos.y, pos.z}, 3})
end
max.y = math.max(max.y, pos.y)
end
if l == exit_l
and y == exit_y then
line = "<-" .. line
else
line = " " .. line
end
print(line)
end
end
local c = {
[0] = minetest.get_content_id("air"),
minetest.get_content_id(material_floor),
minetest.get_content_id(material_wall),
minetest.get_content_id(material_ceiling),
minetest.get_content_id("default:ladder"),
minetest.get_content_id("default:torch"),
}
local manip = minetest.get_voxel_manip()
local emerged_pos1, emerged_pos2 = manip:read_from_map(min, max)
local area = VoxelArea:new({MinEdge=emerged_pos1, MaxEdge=emerged_pos2})
local nodes = manip:get_data()
local param2s = manip:get_param2_data()
for _,p in pairs(tab) do
local p, typ, par = unpack(p)
p = area:index(unpack(p))
nodes[p] = c[typ]
if par then
param2s[p] = par
end
end
manip:set_data(nodes)
manip:set_param2_data(param2s)
manip:write_to_map()
manip:update_map()
-- if exit is underground, dig a hole to surface
local ladder_direction = 2
if cosine == -1 then ladder_direction = 3 end
if sine == -1 then ladder_direction = 5 end
if sine == 1 then ladder_direction = 4 end
local pos = vector.add(playerpos, {
x = cosine * (maze_size_x + 2) - sine * (exit_y - start_y),
z = sine * (maze_size_x + 2) + cosine * (exit_y - start_y),
y = - 3 * exit_l
})
local is_air = minetest.get_node_or_nil(pos)
while is_air
and is_air.name ~= "air" do
minetest.add_node(pos, {name = "default:ladder", param2 = ladder_direction})
pos.y = pos.y + 1
is_air = minetest.get_node_or_nil(pos)
end
-- place a chest as treasure
local items = 0
local item_list = {}
for name in pairs(minetest.registered_items) do
if string.find(name, "default:") then
items = items + 1
item_list[items] = name
end
end
pos = vector.add(playerpos, {
x = cosine * (treasure_x + 2) - sine * (treasure_y - start_y),
z = sine * (treasure_x + 2) + cosine * (treasure_y - start_y),
y = - 3 * treasure_l
})
minetest.add_node(pos, {name = "default:chest"})
local meta = minetest.get_meta(pos)
local inv = meta:get_inventory()
for _,name in pairs(item_list) do
if math.random(items / 5) == 1 then
inv:add_item('main', name)
end
end
-- place a closer-stone to seal the entrance and exit
minetest.add_node(vector.add(playerpos, {
x = cosine * (start_x + 2),
z = sine * (start_x + 2),
y = - 3 * start_l - 1
}), {name = "maze:closer"})
minetest.add_node(vector.add(playerpos, {
x = cosine * (maze_size_x + 1) - sine * (exit_y - start_y),
z = sine * (maze_size_x + 1) + cosine * (exit_y - start_y),
y = - 3 * exit_l - 1
}), {name = "maze:closer"})
print(string.format("[maze] done after ca. %.2fs", os.clock() - t1))
end
minetest.register_chatcommand("maze", {
params = "<size_x> <size_y> <#floors> <material_floor> <material_wall> <material_ceiling>",
privs = {server = true},
description = "Create a maze near your position",
func = spawn_maze
})
local maze_closer = {} -- list of all closer stones
local closer_available = false
-- closer stone definition
minetest.register_node("maze:closer", {
description = "Closestone",
tiles = {"default_cobble.png"},
drop = "",
material = { diggability = "not"},
on_construct = function(pos)
maze_closer[#maze_closer+1] = pos
closer_available = true
end,
})
-- detect player walk over closer stone (abm isn't fast enough)
local function playerwalk()
for _,player in pairs(minetest.get_connected_players()) do
local player_pos = player:getpos()
for _,pos in pairs(maze_closer) do
local dist = math.sqrt( (pos.x - player_pos.x)^2 + (pos.y - (player_pos.y - 0.5))^2 + (pos.z - player_pos.z)^2 )
if dist<3 then -- 2.2 would be enough, just make sure
local meta = minetest.get_meta(pos)
if dist<0.5 then
meta:set_string("trap", "triggered")
elseif dist > 1 then -- 0.71 would be enough, at least one node away
if meta:get_string("trap") == "triggered" then
meta:set_string("trap", "")
for i = 0,2 do
minetest.add_node({x = pos.x, y = pos.y+i, z = pos.z},{name="default:cobble"})
end
minetest.sound_play("default_chest_locked", {pos = pos})
end
end
end
end
end
end
local function do_step()
local tstep
if closer_available then
tstep = 0
playerwalk()
else
tstep = 2
end
minetest.after(tstep, do_step)
end
minetest.after(5, do_step)
-- create list of all closer stones (walk over detection now in globalstep, because abm isn't called often enough
minetest.register_abm({
nodenames = {"maze:closer"},
interval = 5,
chance = 1,
action = function(pos)
for _,closer_pos in pairs(maze_closer) do
if vector.equals(pos, closer_pos) then
return
end
end
maze_closer[#maze_closer+1] = pos
closer_available = true
end,
})
minetest.log("action", "[maze] loaded.")