Changes:
  * Make rayIter a global utility, and use it for radiation too.
  * prettynum -> pretty_num and cleanup.
  * Remove resolve_name/function_exists (unused).
  * Cleanup nuclear reactor code.
This commit is contained in:
ShadowNinja 2016-03-12 13:28:01 -05:00
parent 4a993c2de8
commit 85a984982c
10 changed files with 398 additions and 392 deletions

View File

@ -1,27 +1,38 @@
--load config local digit_sep_esc
local sepchar = nil
do do
local sepcode = technic.config:get("thousand_separator") local sep = technic.config:get("digit_separator")
--default is SI style sep = tonumber(sep) and string.char(sep) or sep or " "
sepchar = sepcode and string.char(sepcode) or " " -- Escape for gsub
baresepchar = sepchar for magic in ("().%+-*?[^$"):gmatch(".") do
--handling if sepchar is magic... if sep == magic then
for magic in string.gmatch("().%+-*?[^$", ".") do sep = "%"..sep
if sepchar == magic then sepchar = "%"..sepchar end end
end end
digit_sep_esc = sep
end end
-- Only changes name, keeps other params
function technic.pretty_num(num)
local str, k = tostring(num), nil
repeat
str, k = str:gsub("^(-?%d+)(%d%d%d)", "%1"..digit_sep_esc.."%2")
until k == 0
return str
end
--- Same as minetest.swap_node, but only changes name
-- and doesn't re-set if already set.
function technic.swap_node(pos, name) function technic.swap_node(pos, name)
local node = minetest.get_node(pos) local node = minetest.get_node(pos)
if node.name ~= name then if node.name ~= name then
node.name = name node.name = name
minetest.swap_node(pos, node) minetest.swap_node(pos, node)
end end
return node.name
end end
-- Fully charge RE chargeable item.
--- Fully charge RE chargeable item.
-- Must be defined early to reference in item definitions. -- Must be defined early to reference in item definitions.
function technic.refill_RE_charge(stack) function technic.refill_RE_charge(stack)
local max_charge = technic.power_tools[stack:get_name()] local max_charge = technic.power_tools[stack:get_name()]
@ -33,35 +44,83 @@ function technic.refill_RE_charge(stack)
return stack return stack
end end
local function resolve_name(function_name)
local a = _G
for key in string.gmatch(function_name, "([^%.]+)(%.?)") do
if a[key] then
a = a[key]
else
return nil
end
end
return a
end
function technic.function_exists(function_name) -- If the node is loaded, returns it. If it isn't loaded, load it and return nil.
return type(resolve_name(function_name)) == 'function'
end
-- if the node is loaded, returns it. If it isn't loaded, load it and return nil.
function technic.get_or_load_node(pos) function technic.get_or_load_node(pos)
local node_or_nil = minetest.get_node_or_nil(pos) local node = minetest.get_node_or_nil(pos)
if node_or_nil then return node_or_nil end if node then return node end
local vm = VoxelManip() local vm = VoxelManip()
local MinEdge, MaxEdge = vm:read_from_map(pos, pos) local MinEdge, MaxEdge = vm:read_from_map(pos, pos)
return nil return nil
end end
function technic.prettynum(num)
local str, k = tostring(num), nil technic.tube_inject_item = pipeworks.tube_inject_item or function(pos, start_pos, velocity, item)
repeat local tubed = pipeworks.tube_item(vector.new(pos), item)
str, k = str:gsub("^(-?%d+)(%d%d%d)", "%1"..sepchar.."%2") tubed:get_luaentity().start_pos = vector.new(start_pos)
until k == 0 tubed:setvelocity(velocity)
return str tubed:setacceleration(vector.new(0, 0, 0))
end end
-- Based on code by Uberi: https://gist.github.com/Uberi/3125280
function technic.trace_node_ray(pos, dir, range)
local p = vector.round(pos)
local x_step, y_step, z_step = 0, 0, 0
local x_component, y_component, z_component = 0, 0, 0
local x_intersect, y_intersect, z_intersect = 0, 0, 0
if dir.x == 0 then
x_intersect = math.huge
elseif dir.x > 0 then
x_step = 1
x_component = 1 / dir.x
x_intersect = x_component
else
x_step = -1
x_component = 1 / -dir.x
end
if dir.y == 0 then
y_intersect = math.huge
elseif dir.y > 0 then
y_step = 1
y_component = 1 / dir.y
y_intersect = y_component
else
y_step = -1
y_component = 1 / -dir.y
end
if dir.z == 0 then
z_intersect = math.huge
elseif dir.z > 0 then
z_step = 1
z_component = 1 / dir.z
z_intersect = z_component
else
z_step = -1
z_component = 1 / -dir.z
end
return function()
if x_intersect < y_intersect then
if x_intersect < z_intersect then
p.x = p.x + x_step
x_intersect = x_intersect + x_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
elseif y_intersect < z_intersect then
p.y = p.y + y_step
y_intersect = y_intersect + y_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
if vector.distance(pos, p) > range then
return nil
end
return p
end
end

View File

@ -2,22 +2,18 @@
-- namespace: technic -- namespace: technic
-- (c) 2012-2013 by RealBadAngel <mk@realbadangel.pl> -- (c) 2012-2013 by RealBadAngel <mk@realbadangel.pl>
local load_start = os.clock()
technic = rawget(_G, "technic") or {} technic = rawget(_G, "technic") or {}
technic.creative_mode = minetest.setting_getbool("creative_mode") technic.creative_mode = minetest.setting_getbool("creative_mode")
technic.tube_inject_item = pipeworks.tube_inject_item or function (pos, start_pos, velocity, item)
local tubed = pipeworks.tube_item(vector.new(pos), item)
tubed:get_luaentity().start_pos = vector.new(start_pos)
tubed:setvelocity(velocity)
tubed:setacceleration(vector.new(0, 0, 0))
end
local load_start = os.clock()
local modpath = minetest.get_modpath("technic") local modpath = minetest.get_modpath("technic")
technic.modpath = modpath technic.modpath = modpath
-- Boilerplate to support intllib -- Boilerplate to support intllib
if minetest.get_modpath("intllib") then if rawget(_G, "intllib") then
technic.getter = intllib.Getter() technic.getter = intllib.Getter()
else else
technic.getter = function(s,a,...)if a==nil then return s end a={a,...}return s:gsub("(@?)@(%(?)(%d+)(%)?)",function(e,o,n,c)if e==""then return a[tonumber(n)]..(o==""and c or"")else return"@"..o..n..c end end) end technic.getter = function(s,a,...)if a==nil then return s end a={a,...}return s:gsub("(@?)@(%(?)(%d+)(%)?)",function(e,o,n,c)if e==""then return a[tonumber(n)]..(o==""and c or"")else return"@"..o..n..c end end) end

View File

@ -1,24 +1,24 @@
-- The enriched uranium rod driven EU generator. --[[
-- A very large and advanced machine providing vast amounts of power. The enriched uranium rod driven EU generator.
-- Very efficient but also expensive to run as it needs uranium. (10000EU 86400 ticks (one week)) A very large and advanced machine providing vast amounts of power.
-- Provides HV EUs that can be down converted as needed. Very efficient but also expensive to run as it needs uranium.
-- Provides 10000 HV EUs for one week (only counted when loaded).
-- The nuclear reactor core needs water and a protective shield to work.
-- This is checked now and then and if the machine is tampered with... BOOM!
local burn_ticks = 7 * 24 * 60 * 60 -- (seconds). The nuclear reactor core requires a casing of water and a protective
local power_supply = 100000 -- EUs shield to work. This is checked now and then and if the casing is not
local fuel_type = "technic:uranium_fuel" -- The reactor burns this stuff intact the reactor will melt down!
--]]
local burn_ticks = 7 * 24 * 60 * 60 -- Seconds
local power_supply = 100000 -- EUs
local fuel_type = "technic:uranium_fuel" -- The reactor burns this
local S = technic.getter local S = technic.getter
if not vector.length_square then local reactor_desc = S("@1 Nuclear Reactor Core", S("HV")),
vector.length_square = function (v)
return v.x*v.x + v.y*v.y + v.z*v.z
end
end
-- FIXME: recipe must make more sense like a rod recepticle, steam chamber, HV generator?
-- FIXME: Recipe should make more sense like a rod recepticle, steam chamber, HV generator?
minetest.register_craft({ minetest.register_craft({
output = 'technic:hv_nuclear_reactor_core', output = 'technic:hv_nuclear_reactor_core',
recipe = { recipe = {
@ -28,7 +28,7 @@ minetest.register_craft({
} }
}) })
local generator_formspec = local reactor_formspec =
"invsize[8,9;]".. "invsize[8,9;]"..
"label[0,0;"..S("Nuclear Reactor Rod Compartment").."]".. "label[0,0;"..S("Nuclear Reactor Rod Compartment").."]"..
"list[current_name;src;2,1;3,2;]".. "list[current_name;src;2,1;3,2;]"..
@ -36,103 +36,111 @@ local generator_formspec =
"listring[]" "listring[]"
-- "Boxy sphere" -- "Boxy sphere"
local nodebox = { local node_box = {
{ -0.353, -0.353, -0.353, 0.353, 0.353, 0.353 }, -- Box {-0.353, -0.353, -0.353, 0.353, 0.353, 0.353}, -- Box
{ -0.495, -0.064, -0.064, 0.495, 0.064, 0.064 }, -- Circle +-x {-0.495, -0.064, -0.064, 0.495, 0.064, 0.064}, -- Circle +-x
{ -0.483, -0.128, -0.128, 0.483, 0.128, 0.128 }, {-0.483, -0.128, -0.128, 0.483, 0.128, 0.128},
{ -0.462, -0.191, -0.191, 0.462, 0.191, 0.191 }, {-0.462, -0.191, -0.191, 0.462, 0.191, 0.191},
{ -0.433, -0.249, -0.249, 0.433, 0.249, 0.249 }, {-0.433, -0.249, -0.249, 0.433, 0.249, 0.249},
{ -0.397, -0.303, -0.303, 0.397, 0.303, 0.303 }, {-0.397, -0.303, -0.303, 0.397, 0.303, 0.303},
{ -0.305, -0.396, -0.305, 0.305, 0.396, 0.305 }, -- Circle +-y {-0.305, -0.396, -0.305, 0.305, 0.396, 0.305}, -- Circle +-y
{ -0.250, -0.432, -0.250, 0.250, 0.432, 0.250 }, {-0.250, -0.432, -0.250, 0.250, 0.432, 0.250},
{ -0.191, -0.461, -0.191, 0.191, 0.461, 0.191 }, {-0.191, -0.461, -0.191, 0.191, 0.461, 0.191},
{ -0.130, -0.482, -0.130, 0.130, 0.482, 0.130 }, {-0.130, -0.482, -0.130, 0.130, 0.482, 0.130},
{ -0.066, -0.495, -0.066, 0.066, 0.495, 0.066 }, {-0.066, -0.495, -0.066, 0.066, 0.495, 0.066},
{ -0.064, -0.064, -0.495, 0.064, 0.064, 0.495 }, -- Circle +-z {-0.064, -0.064, -0.495, 0.064, 0.064, 0.495}, -- Circle +-z
{ -0.128, -0.128, -0.483, 0.128, 0.128, 0.483 }, {-0.128, -0.128, -0.483, 0.128, 0.128, 0.483},
{ -0.191, -0.191, -0.462, 0.191, 0.191, 0.462 }, {-0.191, -0.191, -0.462, 0.191, 0.191, 0.462},
{ -0.249, -0.249, -0.433, 0.249, 0.249, 0.433 }, {-0.249, -0.249, -0.433, 0.249, 0.249, 0.433},
{ -0.303, -0.303, -0.397, 0.303, 0.303, 0.397 }, {-0.303, -0.303, -0.397, 0.303, 0.303, 0.397},
} }
local SS_OFF = 0
local SS_DANGER = 1
local SS_CLEAR = 2
local reactor_siren = {} local reactor_siren = {}
local function siren_set_state(pos, newstate) local function siren_set_state(pos, state)
local hpos = minetest.hash_node_position(pos) local hpos = minetest.hash_node_position(pos)
local siren = reactor_siren[hpos] local siren = reactor_siren[hpos]
if not siren then if not siren then
if newstate == "off" then return end if state == SS_OFF then return end
siren = {state="off"} siren = {state=SS_OFF}
reactor_siren[hpos] = siren reactor_siren[hpos] = siren
end end
if newstate == "danger" and siren.state ~= "danger" then if state == SS_DANGER and siren.state ~= SS_DANGER then
if siren.handle then minetest.sound_stop(siren.handle) end if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48}) siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop",
siren.state = "danger" {pos=pos, gain=1.5, loop=true, max_hear_distance=48})
elseif newstate == "clear" then siren.state = SS_DANGER
elseif state == SS_CLEAR then
if siren.handle then minetest.sound_stop(siren.handle) end if siren.handle then minetest.sound_stop(siren.handle) end
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48}) local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear",
{pos=pos, gain=1.5, loop=false, max_hear_distance=48})
siren.handle = clear_handle siren.handle = clear_handle
siren.state = "clear" siren.state = SS_CLEAR
minetest.after(10, function () minetest.after(10, function()
if siren.handle == clear_handle then if siren.handle ~= clear_handle then return end
minetest.sound_stop(clear_handle) minetest.sound_stop(clear_handle)
if reactor_siren[hpos] == siren then if reactor_siren[hpos] == siren then
reactor_siren[hpos] = nil reactor_siren[hpos] = nil
end
end end
end) end)
elseif newstate == "off" and siren.state ~= "off" then elseif state == SS_OFF and siren.state ~= SS_OFF then
if siren.handle then minetest.sound_stop(siren.handle) end if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = nil
reactor_siren[hpos] = nil reactor_siren[hpos] = nil
end end
end end
local function siren_danger(pos, meta) local function siren_danger(pos, meta)
meta:set_int("siren", 1) meta:set_int("siren", 1)
siren_set_state(pos, "danger") siren_set_state(pos, SS_DANGER)
end end
local function siren_clear(pos, meta) local function siren_clear(pos, meta)
if meta:get_int("siren") ~= 0 then if meta:get_int("siren") ~= 0 then
siren_set_state(pos, "clear") siren_set_state(pos, SS_CLEAR)
meta:set_int("siren", 0) meta:set_int("siren", 0)
end end
end end
-- The standard reactor structure consists of a 9x9x9 cube. A cross --[[
-- section through the middle: The standard reactor structure consists of a 9x9x9 cube. A cross
-- section through the middle:
-- CCCC CCCC
-- CBBB BBBC CCCC CCCC
-- CBSS SSBC CBBB BBBC
-- CBSWWWSBC CBSS SSBC
-- CBSW#WSBC CBSWWWSBC
-- CBSW|WSBC CBSW#WSBC
-- CBSS|SSBC CBSW|WSBC
-- CBBB|BBBC CBSS|SSBC
-- CCCC|CCCC CBBB|BBBC
-- C = Concrete, B = Blast-resistant concrete, S = Stainless Steel, CCCC|CCCC
-- W = water node, # = reactor core, | = HV cable C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
-- W = water node, # = reactor core, | = HV cable
-- The man-hole and the HV cable are only in the middle, and the man-hole
-- is optional. The man-hole and the HV cable are only in the middle, and the man-hole
-- is optional.
-- For the reactor to operate and not melt down, it insists on the inner
-- 7x7x7 portion (from the core out to the blast-resistant concrete) For the reactor to operate and not melt down, it insists on the inner
-- being intact. Intactness only depends on the number of nodes of the 7x7x7 portion (from the core out to the blast-resistant concrete)
-- right type in each layer. The water layer must have water in all but being intact. Intactness only depends on the number of nodes of the
-- at most one node; the steel and blast-resistant concrete layers must right type in each layer. The water layer must have water in all but
-- have the right material in all but at most two nodes. The permitted at most one node; the steel and blast-resistant concrete layers must
-- gaps are meant for the cable and man-hole, but can actually be anywhere have the right material in all but at most two nodes. The permitted
-- and contain anything. For the reactor to be useful, a cable must gaps are meant for the cable and man-hole, but can actually be anywhere
-- connect to the core, but it can go in any direction. and contain anything. For the reactor to be useful, a cable must
-- connect to the core, but it can go in any direction.
-- The outer concrete layer of the standard structure is not required
-- for the reactor to operate. It is noted here because it used to The outer concrete layer of the standard structure is not required
-- be mandatory, and for historical reasons (that it predates the for the reactor to operate. It is noted here because it used to
-- implementation of radiation) it needs to continue being adequate be mandatory, and for historical reasons (that it predates the
-- shielding of legacy reactors. If it ever ceases to be adequate implementation of radiation) it needs to continue being adequate
-- shielding for new reactors, legacy ones should be grandfathered. shielding of legacy reactors. If it ever ceases to be adequate
local reactor_structure_badness = function(pos) shielding for new reactors, legacy ones should be grandfathered.
--]]
local function reactor_structure_badness(pos)
local vm = VoxelManip() local vm = VoxelManip()
local pos1 = vector.subtract(pos, 3) local pos1 = vector.subtract(pos, 3)
local pos2 = vector.add(pos, 3) local pos2 = vector.add(pos, 3)
@ -179,14 +187,16 @@ local reactor_structure_badness = function(pos)
return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer) return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer)
end end
local function meltdown_reactor(pos)
print("A reactor melted down at "..minetest.pos_to_string(pos)) local function melt_down_reactor(pos)
minetest.log("action", "A reactor melted down at "..minetest.pos_to_string(pos))
minetest.set_node(pos, {name="technic:corium_source"}) minetest.set_node(pos, {name="technic:corium_source"})
end end
minetest.register_abm({ minetest.register_abm({
nodenames = {"technic:hv_nuclear_reactor_core_active"}, nodenames = {"technic:hv_nuclear_reactor_core_active"},
interval = 1, interval = 4,
chance = 1, chance = 1,
action = function (pos, node) action = function (pos, node)
local meta = minetest.get_meta(pos) local meta = minetest.get_meta(pos)
@ -194,14 +204,14 @@ minetest.register_abm({
local accum_badness = meta:get_int("structure_accumulated_badness") local accum_badness = meta:get_int("structure_accumulated_badness")
if badness == 0 then if badness == 0 then
if accum_badness ~= 0 then if accum_badness ~= 0 then
meta:set_int("structure_accumulated_badness", accum_badness - 1) meta:set_int("structure_accumulated_badness", accum_badness - 4)
siren_clear(pos, meta) siren_clear(pos, meta)
end end
else else
siren_danger(pos, meta) siren_danger(pos, meta)
accum_badness = accum_badness + badness accum_badness = accum_badness + badness
if accum_badness >= 100 then if accum_badness >= 25 then
meltdown_reactor(pos) melt_down_reactor(pos)
else else
meta:set_int("structure_accumulated_badness", accum_badness) meta:set_int("structure_accumulated_badness", accum_badness)
end end
@ -209,40 +219,36 @@ minetest.register_abm({
end, end,
}) })
local run = function(pos, node) local function run(pos, node)
local meta = minetest.get_meta(pos) local meta = minetest.get_meta(pos)
local machine_name = S("Nuclear %s Generator Core"):format("HV")
local burn_time = meta:get_int("burn_time") or 0 local burn_time = meta:get_int("burn_time") or 0
if burn_time >= burn_ticks or burn_time == 0 then if burn_time >= burn_ticks or burn_time == 0 then
local inv = meta:get_inventory() local inv = meta:get_inventory()
if not inv:is_empty("src") then if not inv:is_empty("src") then
local srclist = inv:get_list("src") local src_list = inv:get_list("src")
local correct_fuel_count = 0 local correct_fuel_count = 0
for _, srcstack in pairs(srclist) do for _, src_stack in pairs(src_list) do
if srcstack then if src_stack and src_stack:get_name() == fuel_type then
if srcstack:get_name() == fuel_type then correct_fuel_count = correct_fuel_count + 1
correct_fuel_count = correct_fuel_count + 1
end
end end
end end
-- Check that the reactor is complete as well -- Check that the reactor is complete and has the correct fuel
-- as the correct number of correct fuel
if correct_fuel_count == 6 and if correct_fuel_count == 6 and
reactor_structure_badness(pos) == 0 then reactor_structure_badness(pos) == 0 then
meta:set_int("burn_time", 1) meta:set_int("burn_time", 1)
technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active") technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active")
meta:set_int("HV_EU_supply", power_supply) meta:set_int("HV_EU_supply", power_supply)
for idx, srcstack in pairs(srclist) do for idx, src_stack in pairs(src_list) do
srcstack:take_item() src_stack:take_item()
inv:set_stack("src", idx, srcstack) inv:set_stack("src", idx, src_stack)
end end
return return
end end
end end
meta:set_int("HV_EU_supply", 0) meta:set_int("HV_EU_supply", 0)
meta:set_int("burn_time", 0) meta:set_int("burn_time", 0)
meta:set_string("infotext", S("%s Idle"):format(machine_name)) meta:set_string("infotext", S("%s Idle"):format(reactor_desc))
technic.swap_node(pos, "technic:hv_nuclear_reactor_core") technic.swap_node(pos, "technic:hv_nuclear_reactor_core")
meta:set_int("structure_accumulated_badness", 0) meta:set_int("structure_accumulated_badness", 0)
siren_clear(pos, meta) siren_clear(pos, meta)
@ -250,40 +256,33 @@ local run = function(pos, node)
burn_time = burn_time + 1 burn_time = burn_time + 1
meta:set_int("burn_time", burn_time) meta:set_int("burn_time", burn_time)
local percent = math.floor(burn_time / burn_ticks * 100) local percent = math.floor(burn_time / burn_ticks * 100)
meta:set_string("infotext", machine_name.." ("..percent.."%)") meta:set_string("infotext", reactor_desc.." ("..percent.."%)")
meta:set_int("HV_EU_supply", power_supply) meta:set_int("HV_EU_supply", power_supply)
end end
end end
minetest.register_node("technic:hv_nuclear_reactor_core", { minetest.register_node("technic:hv_nuclear_reactor_core", {
description = S("Nuclear %s Generator Core"):format("HV"), description = reactor_desc,
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", tiles = {"technic_hv_nuclear_reactor_core.png"},
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1, technic_hv=1}, groups = {cracky=1, technic_machine=1, technic_hv=1},
legacy_facedir_simple = true, legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(), sounds = default.node_sound_wood_defaults(),
drawtype="nodebox", drawtype = "nodebox",
paramtype = "light", paramtype = "light",
stack_max = 1, stack_max = 1,
node_box = { node_box = {
type = "fixed", type = "fixed",
fixed = nodebox fixed = node_box
}, },
on_construct = function(pos) on_construct = function(pos)
local meta = minetest.get_meta(pos) local meta = minetest.get_meta(pos)
meta:set_string("infotext", S("Nuclear %s Generator Core"):format("HV")) meta:set_string("infotext", reactor_desc)
meta:set_int("HV_EU_supply", 0) meta:set_string("formspec", reactor_formspec)
-- Signal to the switching station that this device burns some
-- sort of fuel and needs special handling
meta:set_int("HV_EU_from_fuel", 1)
meta:set_int("burn_time", 0)
meta:set_string("formspec", generator_formspec)
local inv = meta:get_inventory() local inv = meta:get_inventory()
inv:set_size("src", 6) inv:set_size("src", 6)
end, end,
can_dig = technic.machine_can_dig, can_dig = technic.machine_can_dig,
on_destruct = function(pos) siren_set_state(pos, "off") end, on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move, allow_metadata_inventory_move = technic.machine_inventory_move,
@ -291,24 +290,22 @@ minetest.register_node("technic:hv_nuclear_reactor_core", {
}) })
minetest.register_node("technic:hv_nuclear_reactor_core_active", { minetest.register_node("technic:hv_nuclear_reactor_core_active", {
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png", tiles = {"technic_hv_nuclear_reactor_core.png"},
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1, technic_hv=1, groups = {cracky=1, technic_machine=1, technic_hv=1,
radioactive=11000, not_in_creative_inventory=1}, radioactive=11000, not_in_creative_inventory=1},
legacy_facedir_simple = true, legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(), sounds = default.node_sound_wood_defaults(),
drop="technic:hv_nuclear_reactor_core", drop = "technic:hv_nuclear_reactor_core",
drawtype="nodebox", drawtype = "nodebox",
light_source = 15, light_source = 14,
paramtype = "light", paramtype = "light",
node_box = { node_box = {
type = "fixed", type = "fixed",
fixed = nodebox fixed = node_box
}, },
can_dig = technic.machine_can_dig, can_dig = technic.machine_can_dig,
after_dig_node = meltdown_reactor, after_dig_node = melt_down_reactor,
on_destruct = function(pos) siren_set_state(pos, "off") end, on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
allow_metadata_inventory_put = technic.machine_inventory_put, allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take, allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move, allow_metadata_inventory_move = technic.machine_inventory_move,
@ -319,10 +316,10 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
end, end,
on_timer = function(pos, node) on_timer = function(pos, node)
local meta = minetest.get_meta(pos) local meta = minetest.get_meta(pos)
-- Connected back? -- Connected back?
if meta:get_int("HV_EU_timeout") > 0 then return false end if meta:get_int("HV_EU_timeout") > 0 then return false end
local burn_time = meta:get_int("burn_time") or 0 local burn_time = meta:get_int("burn_time") or 0
if burn_time >= burn_ticks or burn_time == 0 then if burn_time >= burn_ticks or burn_time == 0 then
@ -333,7 +330,7 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
siren_clear(pos, meta) siren_clear(pos, meta)
return false return false
end end
meta:set_int("burn_time", burn_time + 1) meta:set_int("burn_time", burn_time + 1)
return true return true
end, end,
@ -342,34 +339,36 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer) technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer)
technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer) technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer)
-- radioactivity --[[
Radioactivity
Radiation resistance represents the extent to which a material
attenuates radiation passing through it; i.e., how good a radiation
shield it is. This is identified per node type. For materials that
exist in real life, the radiation resistance value that this system
uses for a node type consisting of a solid cube of that material is the
(approximate) number of halvings of ionising radiation that is achieved
by a meter of the material in real life. This is approximately
proportional to density, which provides a good way to estimate it.
Homogeneous mixtures of materials have radiation resistance computed
by a simple weighted mean. Note that the amount of attenuation that
a material achieves in-game is not required to be (and is not) the
same as the attenuation achieved in real life.
Radiation resistance for a node type may be specified in the node
definition, under the key "radiation_resistance". As an interim
measure, until node definitions widely include this, this code
knows a bunch of values for particular node types in several mods,
and values for groups of node types. The node definition takes
precedence if it specifies a value. Nodes for which no value at
all is known are taken to provide no radiation resistance at all;
this is appropriate for the majority of node types. Only node types
consisting of a fairly homogeneous mass of material should report
non-zero radiation resistance; anything with non-uniform geometry
or complex internal structure should show no radiation resistance.
Fractional resistance values are permitted.
--]]
-- Radiation resistance represents the extent to which a material
-- attenuates radiation passing through it; i.e., how good a radiation
-- shield it is. This is identified per node type. For materials that
-- exist in real life, the radiation resistance value that this system
-- uses for a node type consisting of a solid cube of that material is the
-- (approximate) number of halvings of ionising radiation that is achieved
-- by a metre of the material in real life. This is approximately
-- proportional to density, which provides a good way to estimate it.
-- Homogeneous mixtures of materials have radiation resistance computed
-- by a simple weighted mean. Note that the amount of attenuation that
-- a material achieves in-game is not required to be (and is not) the
-- same as the attenuation achieved in real life.
--
-- Radiation resistance for a node type may be specified in the node
-- definition, under the key "radiation_resistance". As an interim
-- measure, until node definitions widely include this, this code
-- knows a bunch of values for particular node types in several mods,
-- and values for groups of node types. The node definition takes
-- precedence if it specifies a value. Nodes for which no value at
-- all is known are taken to provide no radiation resistance at all;
-- this is appropriate for the majority of node types. Only node types
-- consisting of a fairly homogeneous mass of material should report
-- non-zero radiation resistance; anything with non-uniform geometry
-- or complex internal structure should show no radiation resistance.
-- Fractional resistance values are permitted; two significant figures
-- is the recommended precision.
local default_radiation_resistance_per_node = { local default_radiation_resistance_per_node = {
["default:brick"] = 13, ["default:brick"] = 13,
["default:bronzeblock"] = 45, ["default:bronzeblock"] = 45,
@ -506,12 +505,13 @@ local default_radiation_resistance_per_group = {
wood = 1.7, wood = 1.7,
} }
local cache_radiation_resistance = {} local cache_radiation_resistance = {}
local function node_radiation_resistance(nodename) local function node_radiation_resistance(node_name)
local eff = cache_radiation_resistance[nodename] local eff = cache_radiation_resistance[node_name]
if eff then return eff end if eff then return eff end
local def = minetest.registered_nodes[nodename] or {groups={}} local def = minetest.registered_nodes[node_name]
eff = def.radiation_resistance or default_radiation_resistance_per_node[nodename] eff = def and def.radiation_resistance or
if not eff then default_radiation_resistance_per_node[node_name]
if def and not eff then
for g, v in pairs(def.groups) do for g, v in pairs(def.groups) do
if v > 0 and default_radiation_resistance_per_group[g] then if v > 0 and default_radiation_resistance_per_group[g] then
eff = default_radiation_resistance_per_group[g] eff = default_radiation_resistance_per_group[g]
@ -520,112 +520,113 @@ local function node_radiation_resistance(nodename)
end end
end end
if not eff then eff = 0 end if not eff then eff = 0 end
cache_radiation_resistance[nodename] = eff cache_radiation_resistance[node_name] = eff
return eff return eff
end end
-- Radioactive nodes cause damage to nearby players. The damage --[[
-- effect depends on the intrinsic strength of the radiation source, Radioactive nodes cause damage to nearby players. The damage
-- the distance between the source and the player, and the shielding effect depends on the intrinsic strength of the radiation source,
-- effect of the intervening material. These determine a rate of damage; the distance between the source and the player, and the shielding
-- total damage caused is the integral of this over time. effect of the intervening material. These determine a rate of damage;
-- total damage caused is the integral of this over time.
-- In the absence of effective shielding, for a specific source the
-- damage rate varies realistically in inverse proportion to the square In the absence of effective shielding, for a specific source the
-- of the distance. (Distance is measured to the player's abdomen, damage rate varies realistically in inverse proportion to the square
-- not to the nominal player position which corresponds to the foot.) of the distance. (Distance is measured to the player's abdomen,
-- However, if the player is inside a non-walkable (liquid or gaseous) not to the nominal player position which corresponds to the foot.)
-- radioactive node, the nominal distance could go to zero, yielding However, if the player is inside a non-walkable (liquid or gaseous)
-- infinite damage. In that case, the player's body is displacing the radioactive node, the nominal distance could go to zero, yielding
-- radioactive material, so the effective distance should remain non-zero. infinite damage. In that case, the player's body is displacing the
-- We therefore apply a lower distance bound of sqrt(0.75) m, which is radioactive material, so the effective distance should remain non-zero.
-- the maximum distance one can get from the node centre within the node. We therefore apply a lower distance bound of sqrt(0.75), which is
-- the maximum distance one can get from the node center within the node.
-- A radioactive node is identified by being in the "radioactive" group,
-- and the group value signifies the strength of the radiation source. A radioactive node is identified by being in the "radioactive" group,
-- The group value is the distance in millimetres from a node at which and the group value signifies the strength of the radiation source.
-- an unshielded player will be damaged by 0.25 HP/s. Or, equivalently, The group value is 1000 times the distance from a node at which
-- it is 2000 times the square root of the damage rate in HP/s that an an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
-- unshielded player 1 m away will take. it is 2000 times the square root of the damage rate in HP/s that an
-- unshielded player 1 node away will take.
-- Shielding is assessed by sampling every 0.25 m along the path
-- from the source to the player, ignoring the source node itself. Shielding is assessed by adding the shielding values of all nodes
-- The summed shielding values from the sampled nodes yield a measure between the source node and the player, ignoring the source node itself.
-- of the total amount of shielding on the path. As in reality, As in reality, shielding causes exponential attenuation of radiation.
-- shielding causes exponential attenuation of radiation. However, the However, the effect is scaled down relative to real life. A node with
-- effect is scaled down relative to real life. A metre of a node with radiation resistance value R yields attenuation of sqrt(R) * 0.1 nepers.
-- radiation resistance value R yields attenuation of sqrt(R)*0.1 nepers. (In real life it would be about R * 0.69 nepers, by the definition
-- (In real life it would be about R*0.69 nepers, by the definition of the radiation resistance values.) The sqrt part of this formula
-- of the radiation resistance values.) The sqrt part of this formula scales down the differences between shielding types, reflecting the
-- scales down the differences between shielding types, reflecting the game's simplification of making expensive materials such as gold
-- game's simplification of making expensive materials such as gold readily available in cubes. The multiplicative factor in the
-- readily available in cubic metres. The multiplicative factor in the formula scales down the difference between shielded and unshielded
-- formula scales down the difference between shielded and unshielded safe distances, avoiding the latter becoming impractically large.
-- safe distances, avoiding the latter becoming impractically large.
-- Damage is processed at rates down to 0.25 HP/s, which in the absence of
-- Damage is processed at rates down to 0.25 HP/s, which in the absence of shielding is attained at the distance specified by the "radioactive"
-- shielding is attained at the distance specified by the "radioactive" group value. Computed damage rates below 0.25 HP/s result in no
-- group value. Computed damage rates below 0.25 HP/s result in no damage at all to the player. This gives the player an opportunity
-- damage at all to the player. This gives the player an opportunity to be safe, and limits the range at which source/player interactions
-- to be safe, and limits the range at which source/player interactions need to be considered.
-- need to be considered. --]]
local assumed_abdomen_offset = vector.new(0, 1, 0) local abdomen_offset = vector.new(0, 1, 0)
local assumed_abdomen_offset_length = vector.length(assumed_abdomen_offset) local abdomen_offset_length = vector.length(abdomen_offset)
local cache_scaled_shielding = {} local cache_scaled_shielding = {}
local damage_enabled = minetest.setting_getbool("enable_damage") local function dmg_player(pos, o)
local pl_pos = vector.add(o:getpos(), abdomen_offset)
local shielding = 0
for ray_pos in technic.trace_node_ray(pos,
vector.direction(pos, pl_pos),
vector.distance(pos, pl_pos)) do
if not vector.equals(ray_pos, pos) then
local shield_name = minetest.get_node(ray_pos).name
local shield_val = cache_scaled_shielding[sname]
if not shield_val then
shield_val = math.sqrt(node_radiation_resistance(shield_name)) * -0.025
cache_scaled_shielding[shield_name] = shield_val
end
shielding = shielding + sval
end
end
local dmg = (0.25e-6 * strength * strength * math.exp(shielding)) / math.max(0.75, dist_sq)
if dmg >= 0.25 then
local dmg_int = math.floor(dmg)
-- The closer you are to getting one more damage point,
-- the more likely it will be added.
if math.random() < dmg - dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
end
end
end
if damage_enabled then local function dmg_abm(pos, node)
local strength = minetest.get_item_group(node.name, "radioactive")
for _, o in pairs(minetest.get_objects_inside_radius(pos,
strength * 0.001 + abdomen_offset_length)) do
if o:is_player() then
dmg_player(pos, o)
end
end
end
if minetest.setting_getbool("enable_damage") then
minetest.register_abm({ minetest.register_abm({
nodenames = {"group:radioactive"}, nodenames = {"group:radioactive"},
interval = 1, interval = 1,
chance = 1, chance = 1,
action = function (pos, node) action = dmg_abm,
local strength = minetest.registered_nodes[node.name].groups.radioactive
for _, o in ipairs(minetest.get_objects_inside_radius(pos, strength*0.001 + assumed_abdomen_offset_length)) do
if o:is_player() then
local rel = vector.subtract(vector.add(o:getpos(), assumed_abdomen_offset), pos)
local dist_sq = vector.length_square(rel)
local dist = math.sqrt(dist_sq)
local dirstep = dist == 0 and vector.new(0,0,0) or vector.divide(rel, dist*4)
local intpos = pos
local shielding = 0
for intdist = 0.25, dist, 0.25 do
intpos = vector.add(intpos, dirstep)
local intnodepos = vector.round(intpos)
if not vector.equals(intnodepos, pos) then
local sname = minetest.get_node(intnodepos).name
local sval = cache_scaled_shielding[sname]
if not sval then
sval = math.sqrt(node_radiation_resistance(sname)) * -0.025
cache_scaled_shielding[sname] = sval
end
shielding = shielding + sval
end
end
local dmg_rate = 0.25e-6 * strength*strength * math.exp(shielding) / math.max(0.75, dist_sq)
if dmg_rate >= 0.25 then
local dmg_int = math.floor(dmg_rate)
if math.random() < dmg_rate-dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
end
end
end
end
end,
}) })
end end
-- radioactive materials that can result from destroying a reactor -- Radioactive materials that can result from destroying a reactor
local corium_griefing = 1 local griefing = technic.config:get_bool("enable_corium_griefing")
if (not technic.config:get_bool("enable_corium_griefing")) then
corium_griefing = 0
end
for _, state in ipairs({ "flowing", "source" }) do for _, state in pairs({"flowing", "source"}) do
minetest.register_node("technic:corium_"..state, { minetest.register_node("technic:corium_"..state, {
description = S(state == "source" and "Corium Source" or "Flowing Corium"), description = S(state == "source" and "Corium Source" or "Flowing Corium"),
drawtype = (state == "source" and "liquid" or "flowingliquid"), drawtype = (state == "source" and "liquid" or "flowingliquid"),
@ -653,18 +654,18 @@ for _, state in ipairs({ "flowing", "source" }) do
liquid_viscosity = LAVA_VISC, liquid_viscosity = LAVA_VISC,
liquid_renewable = false, liquid_renewable = false,
damage_per_second = 6, damage_per_second = 6,
post_effect_color = { a=192, r=80, g=160, b=80 }, post_effect_color = {a=192, r=80, g=160, b=80},
groups = { groups = {
liquid = 2, liquid = 2,
hot = 3, hot = 3,
igniter = corium_griefing, igniter = (griefing and 1 or 0),
radioactive = (state == "source" and 32000 or 16000), radioactive = (state == "source" and 32000 or 16000),
not_in_creative_inventory = (state == "flowing" and 1 or nil), not_in_creative_inventory = (state == "flowing" and 1 or nil),
}, },
}) })
end end
if bucket and bucket.register_liquid then if rawget(_G, "bucket") and bucket.register_liquid then
bucket.register_liquid( bucket.register_liquid(
"technic:corium_source", "technic:corium_source",
"technic:corium_flowing", "technic:corium_flowing",
@ -676,12 +677,11 @@ end
minetest.register_node("technic:chernobylite_block", { minetest.register_node("technic:chernobylite_block", {
description = S("Chernobylite Block"), description = S("Chernobylite Block"),
tiles = { "technic_chernobylite_block.png" }, tiles = {"technic_chernobylite_block.png"},
is_ground_content = true, is_ground_content = true,
groups = { cracky=1, radioactive=5000, level=2 }, groups = {cracky=1, radioactive=5000, level=2},
sounds = default.node_sound_stone_defaults(), sounds = default.node_sound_stone_defaults(),
light_source = 2, light_source = 2,
}) })
minetest.register_abm({ minetest.register_abm({
@ -689,25 +689,36 @@ minetest.register_abm({
neighbors = {"technic:corium_source"}, neighbors = {"technic:corium_source"},
interval = 1, interval = 1,
chance = 1, chance = 1,
action = function (pos, node) action = function(pos, node)
minetest.remove_node(pos) minetest.remove_node(pos)
end, end,
}) })
if (corium_griefing == 1) then minetest.register_abm({
nodenames = {"technic:corium_flowing"},
neighbors = {"group:water"},
interval = 1,
chance = 1,
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
interval = 5,
chance = (griefing and 10 or 1),
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
if griefing then
minetest.register_abm({ minetest.register_abm({
nodenames = {"technic:corium_flowing"}, nodenames = {"technic:corium_source", "technic:corium_flowing"},
interval = 5,
chance = 10,
action = function (pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
minetest.register_abm({
nodenames = { "technic:corium_source", "technic:corium_flowing" },
interval = 4, interval = 4,
chance = 4, chance = 4,
action = function (pos, node) action = function(pos, node)
for _, offset in ipairs({ for _, offset in ipairs({
vector.new(1,0,0), vector.new(1,0,0),
vector.new(-1,0,0), vector.new(-1,0,0),
@ -722,3 +733,4 @@ if (corium_griefing == 1) then
end, end,
}) })
end end

View File

@ -35,7 +35,7 @@ local run = function(pos, node)
local charge_to_give = math.floor((light + pos1.y) * 3) local charge_to_give = math.floor((light + pos1.y) * 3)
charge_to_give = math.max(charge_to_give, 0) charge_to_give = math.max(charge_to_give, 0)
charge_to_give = math.min(charge_to_give, 200) charge_to_give = math.min(charge_to_give, 200)
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.prettynum(charge_to_give))) meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.pretty_num(charge_to_give)))
meta:set_int("LV_EU_supply", charge_to_give) meta:set_int("LV_EU_supply", charge_to_give)
else else
meta:set_string("infotext", S("%s Idle"):format(machine_name)) meta:set_string("infotext", S("%s Idle"):format(machine_name))

View File

@ -55,7 +55,7 @@ local run = function(pos, node)
meta:set_int("MV_EU_supply", power) meta:set_int("MV_EU_supply", power)
end end
meta:set_string("infotext", S("@1 (@2 EU)", machine_name, technic.prettynum(power))) meta:set_string("infotext", S("@1 (@2 EU)", machine_name, technic.pretty_num(power)))
end end
minetest.register_node("technic:wind_mill", { minetest.register_node("technic:wind_mill", {

View File

@ -151,7 +151,7 @@ function technic.register_battery_box(data)
..":technic_power_meter_fg.png]") ..":technic_power_meter_fg.png]")
local infotext = S("@1 Battery Box: @2/@3", tier, local infotext = S("@1 Battery Box: @2/@3", tier,
technic.prettynum(current_charge), technic.prettynum(max_charge)) technic.pretty_num(current_charge), technic.pretty_num(max_charge))
if eu_input == 0 then if eu_input == 0 then
infotext = S("%s Idle"):format(infotext) infotext = S("%s Idle"):format(infotext)
end end

View File

@ -30,7 +30,7 @@ function technic.register_solar_array(data)
local charge_to_give = math.floor((light + pos.y) * data.power) local charge_to_give = math.floor((light + pos.y) * data.power)
charge_to_give = math.max(charge_to_give, 0) charge_to_give = math.max(charge_to_give, 0)
charge_to_give = math.min(charge_to_give, data.power * 50) charge_to_give = math.min(charge_to_give, data.power * 50)
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.prettynum(charge_to_give))) meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.pretty_num(charge_to_give)))
meta:set_int(tier.."_EU_supply", charge_to_give) meta:set_int(tier.."_EU_supply", charge_to_give)
else else
meta:set_string("infotext", S("%s Idle"):format(machine_name)) meta:set_string("infotext", S("%s Idle"):format(machine_name))

View File

@ -30,7 +30,7 @@ local run = function(pos, node)
meta:set_int(from.."_EU_supply", 0) meta:set_int(from.."_EU_supply", 0)
meta:set_int(to.."_EU_demand", 0) meta:set_int(to.."_EU_demand", 0)
meta:set_int(to.."_EU_supply", input * remain) meta:set_int(to.."_EU_supply", input * remain)
meta:set_string("infotext", S("@1 (@2 @3 -> @4 @5)", machine_name, technic.prettynum(input), from, technic.prettynum(input * remain), to)) meta:set_string("infotext", S("@1 (@2 @3 -> @4 @5)", machine_name, technic.pretty_num(input), from, technic.pretty_num(input * remain), to))
else else
meta:set_string("infotext", S("%s Has Bad Cabling"):format(machine_name)) meta:set_string("infotext", S("%s Has Bad Cabling"):format(machine_name))
if to then if to then

View File

@ -289,7 +289,7 @@ minetest.register_abm({
meta:set_string("infotext", meta:set_string("infotext",
S("@1. Supply: @2 Demand: @3", S("@1. Supply: @2 Demand: @3",
machine_name, technic.prettynum(PR_eu_supply), technic.prettynum(RE_eu_demand))) machine_name, technic.pretty_num(PR_eu_supply), technic.pretty_num(RE_eu_demand)))
-- If the PR supply is enough for the RE demand supply them all -- If the PR supply is enough for the RE demand supply them all
if PR_eu_supply >= RE_eu_demand then if PR_eu_supply >= RE_eu_demand then

View File

@ -32,67 +32,6 @@ minetest.register_craft({
} }
}) })
-- Based on code by Uberi: https://gist.github.com/Uberi/3125280
local function rayIter(pos, dir, range)
local p = vector.round(pos)
local x_step, y_step, z_step = 0, 0, 0
local x_component, y_component, z_component = 0, 0, 0
local x_intersect, y_intersect, z_intersect = 0, 0, 0
if dir.x == 0 then
x_intersect = math.huge
elseif dir.x > 0 then
x_step = 1
x_component = 1 / dir.x
x_intersect = x_component
else
x_step = -1
x_component = 1 / -dir.x
end
if dir.y == 0 then
y_intersect = math.huge
elseif dir.y > 0 then
y_step = 1
y_component = 1 / dir.y
y_intersect = y_component
else
y_step = -1
y_component = 1 / -dir.y
end
if dir.z == 0 then
z_intersect = math.huge
elseif dir.z > 0 then
z_step = 1
z_component = 1 / dir.z
z_intersect = z_component
else
z_step = -1
z_component = 1 / -dir.z
end
return function()
if x_intersect < y_intersect then
if x_intersect < z_intersect then
p.x = p.x + x_step
x_intersect = x_intersect + x_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
elseif y_intersect < z_intersect then
p.y = p.y + y_step
y_intersect = y_intersect + y_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
if vector.distance(pos, p) > range then
return nil
end
return p
end
end
local function laser_node(pos, node, player) local function laser_node(pos, node, player)
local def = minetest.registered_nodes[node.name] local def = minetest.registered_nodes[node.name]
if def and def.liquidtype ~= "none" then if def and def.liquidtype ~= "none" then
@ -132,7 +71,7 @@ local function laser_shoot(player, range, particle_texture, sound)
texture = particle_texture .. "^[transform" .. math.random(0, 7), texture = particle_texture .. "^[transform" .. math.random(0, 7),
}) })
minetest.sound_play(sound, {pos = player_pos, max_hear_distance = range}) minetest.sound_play(sound, {pos = player_pos, max_hear_distance = range})
for pos in rayIter(start_pos, dir, range) do for pos in technic.trace_node_ray(start_pos, dir, range) do
if minetest.is_protected(pos, player_name) then if minetest.is_protected(pos, player_name) then
minetest.record_protection_violation(pos, player_name) minetest.record_protection_violation(pos, player_name)
break break