mirror of
https://github.com/minetest-mods/technic.git
synced 2025-07-07 18:50:41 +02:00
Cleanup
Changes: * Make rayIter a global utility, and use it for radiation too. * prettynum -> pretty_num and cleanup. * Remove resolve_name/function_exists (unused). * Cleanup nuclear reactor code.
This commit is contained in:
@ -1,24 +1,24 @@
|
||||
-- The enriched uranium rod driven EU generator.
|
||||
-- A very large and advanced machine providing vast amounts of power.
|
||||
-- Very efficient but also expensive to run as it needs uranium. (10000EU 86400 ticks (one week))
|
||||
-- Provides HV EUs that can be down converted as needed.
|
||||
--
|
||||
-- The nuclear reactor core needs water and a protective shield to work.
|
||||
-- This is checked now and then and if the machine is tampered with... BOOM!
|
||||
--[[
|
||||
The enriched uranium rod driven EU generator.
|
||||
A very large and advanced machine providing vast amounts of power.
|
||||
Very efficient but also expensive to run as it needs uranium.
|
||||
Provides 10000 HV EUs for one week (only counted when loaded).
|
||||
|
||||
local burn_ticks = 7 * 24 * 60 * 60 -- (seconds).
|
||||
local power_supply = 100000 -- EUs
|
||||
local fuel_type = "technic:uranium_fuel" -- The reactor burns this stuff
|
||||
The nuclear reactor core requires a casing of water and a protective
|
||||
shield to work. This is checked now and then and if the casing is not
|
||||
intact the reactor will melt down!
|
||||
--]]
|
||||
|
||||
local burn_ticks = 7 * 24 * 60 * 60 -- Seconds
|
||||
local power_supply = 100000 -- EUs
|
||||
local fuel_type = "technic:uranium_fuel" -- The reactor burns this
|
||||
|
||||
local S = technic.getter
|
||||
|
||||
if not vector.length_square then
|
||||
vector.length_square = function (v)
|
||||
return v.x*v.x + v.y*v.y + v.z*v.z
|
||||
end
|
||||
end
|
||||
local reactor_desc = S("@1 Nuclear Reactor Core", S("HV")),
|
||||
|
||||
-- FIXME: recipe must make more sense like a rod recepticle, steam chamber, HV generator?
|
||||
|
||||
-- FIXME: Recipe should make more sense like a rod recepticle, steam chamber, HV generator?
|
||||
minetest.register_craft({
|
||||
output = 'technic:hv_nuclear_reactor_core',
|
||||
recipe = {
|
||||
@ -28,7 +28,7 @@ minetest.register_craft({
|
||||
}
|
||||
})
|
||||
|
||||
local generator_formspec =
|
||||
local reactor_formspec =
|
||||
"invsize[8,9;]"..
|
||||
"label[0,0;"..S("Nuclear Reactor Rod Compartment").."]"..
|
||||
"list[current_name;src;2,1;3,2;]"..
|
||||
@ -36,103 +36,111 @@ local generator_formspec =
|
||||
"listring[]"
|
||||
|
||||
-- "Boxy sphere"
|
||||
local nodebox = {
|
||||
{ -0.353, -0.353, -0.353, 0.353, 0.353, 0.353 }, -- Box
|
||||
{ -0.495, -0.064, -0.064, 0.495, 0.064, 0.064 }, -- Circle +-x
|
||||
{ -0.483, -0.128, -0.128, 0.483, 0.128, 0.128 },
|
||||
{ -0.462, -0.191, -0.191, 0.462, 0.191, 0.191 },
|
||||
{ -0.433, -0.249, -0.249, 0.433, 0.249, 0.249 },
|
||||
{ -0.397, -0.303, -0.303, 0.397, 0.303, 0.303 },
|
||||
{ -0.305, -0.396, -0.305, 0.305, 0.396, 0.305 }, -- Circle +-y
|
||||
{ -0.250, -0.432, -0.250, 0.250, 0.432, 0.250 },
|
||||
{ -0.191, -0.461, -0.191, 0.191, 0.461, 0.191 },
|
||||
{ -0.130, -0.482, -0.130, 0.130, 0.482, 0.130 },
|
||||
{ -0.066, -0.495, -0.066, 0.066, 0.495, 0.066 },
|
||||
{ -0.064, -0.064, -0.495, 0.064, 0.064, 0.495 }, -- Circle +-z
|
||||
{ -0.128, -0.128, -0.483, 0.128, 0.128, 0.483 },
|
||||
{ -0.191, -0.191, -0.462, 0.191, 0.191, 0.462 },
|
||||
{ -0.249, -0.249, -0.433, 0.249, 0.249, 0.433 },
|
||||
{ -0.303, -0.303, -0.397, 0.303, 0.303, 0.397 },
|
||||
local node_box = {
|
||||
{-0.353, -0.353, -0.353, 0.353, 0.353, 0.353}, -- Box
|
||||
{-0.495, -0.064, -0.064, 0.495, 0.064, 0.064}, -- Circle +-x
|
||||
{-0.483, -0.128, -0.128, 0.483, 0.128, 0.128},
|
||||
{-0.462, -0.191, -0.191, 0.462, 0.191, 0.191},
|
||||
{-0.433, -0.249, -0.249, 0.433, 0.249, 0.249},
|
||||
{-0.397, -0.303, -0.303, 0.397, 0.303, 0.303},
|
||||
{-0.305, -0.396, -0.305, 0.305, 0.396, 0.305}, -- Circle +-y
|
||||
{-0.250, -0.432, -0.250, 0.250, 0.432, 0.250},
|
||||
{-0.191, -0.461, -0.191, 0.191, 0.461, 0.191},
|
||||
{-0.130, -0.482, -0.130, 0.130, 0.482, 0.130},
|
||||
{-0.066, -0.495, -0.066, 0.066, 0.495, 0.066},
|
||||
{-0.064, -0.064, -0.495, 0.064, 0.064, 0.495}, -- Circle +-z
|
||||
{-0.128, -0.128, -0.483, 0.128, 0.128, 0.483},
|
||||
{-0.191, -0.191, -0.462, 0.191, 0.191, 0.462},
|
||||
{-0.249, -0.249, -0.433, 0.249, 0.249, 0.433},
|
||||
{-0.303, -0.303, -0.397, 0.303, 0.303, 0.397},
|
||||
}
|
||||
|
||||
local SS_OFF = 0
|
||||
local SS_DANGER = 1
|
||||
local SS_CLEAR = 2
|
||||
|
||||
local reactor_siren = {}
|
||||
local function siren_set_state(pos, newstate)
|
||||
local function siren_set_state(pos, state)
|
||||
local hpos = minetest.hash_node_position(pos)
|
||||
local siren = reactor_siren[hpos]
|
||||
if not siren then
|
||||
if newstate == "off" then return end
|
||||
siren = {state="off"}
|
||||
if state == SS_OFF then return end
|
||||
siren = {state=SS_OFF}
|
||||
reactor_siren[hpos] = siren
|
||||
end
|
||||
if newstate == "danger" and siren.state ~= "danger" then
|
||||
if state == SS_DANGER and siren.state ~= SS_DANGER then
|
||||
if siren.handle then minetest.sound_stop(siren.handle) end
|
||||
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48})
|
||||
siren.state = "danger"
|
||||
elseif newstate == "clear" then
|
||||
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop",
|
||||
{pos=pos, gain=1.5, loop=true, max_hear_distance=48})
|
||||
siren.state = SS_DANGER
|
||||
elseif state == SS_CLEAR then
|
||||
if siren.handle then minetest.sound_stop(siren.handle) end
|
||||
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48})
|
||||
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear",
|
||||
{pos=pos, gain=1.5, loop=false, max_hear_distance=48})
|
||||
siren.handle = clear_handle
|
||||
siren.state = "clear"
|
||||
minetest.after(10, function ()
|
||||
if siren.handle == clear_handle then
|
||||
minetest.sound_stop(clear_handle)
|
||||
if reactor_siren[hpos] == siren then
|
||||
reactor_siren[hpos] = nil
|
||||
end
|
||||
siren.state = SS_CLEAR
|
||||
minetest.after(10, function()
|
||||
if siren.handle ~= clear_handle then return end
|
||||
minetest.sound_stop(clear_handle)
|
||||
if reactor_siren[hpos] == siren then
|
||||
reactor_siren[hpos] = nil
|
||||
end
|
||||
end)
|
||||
elseif newstate == "off" and siren.state ~= "off" then
|
||||
elseif state == SS_OFF and siren.state ~= SS_OFF then
|
||||
if siren.handle then minetest.sound_stop(siren.handle) end
|
||||
siren.handle = nil
|
||||
reactor_siren[hpos] = nil
|
||||
end
|
||||
end
|
||||
|
||||
local function siren_danger(pos, meta)
|
||||
meta:set_int("siren", 1)
|
||||
siren_set_state(pos, "danger")
|
||||
siren_set_state(pos, SS_DANGER)
|
||||
end
|
||||
|
||||
local function siren_clear(pos, meta)
|
||||
if meta:get_int("siren") ~= 0 then
|
||||
siren_set_state(pos, "clear")
|
||||
siren_set_state(pos, SS_CLEAR)
|
||||
meta:set_int("siren", 0)
|
||||
end
|
||||
end
|
||||
|
||||
-- The standard reactor structure consists of a 9x9x9 cube. A cross
|
||||
-- section through the middle:
|
||||
--
|
||||
-- CCCC CCCC
|
||||
-- CBBB BBBC
|
||||
-- CBSS SSBC
|
||||
-- CBSWWWSBC
|
||||
-- CBSW#WSBC
|
||||
-- CBSW|WSBC
|
||||
-- CBSS|SSBC
|
||||
-- CBBB|BBBC
|
||||
-- CCCC|CCCC
|
||||
-- C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
|
||||
-- W = water node, # = reactor core, | = HV cable
|
||||
--
|
||||
-- The man-hole and the HV cable are only in the middle, and the man-hole
|
||||
-- is optional.
|
||||
--
|
||||
-- For the reactor to operate and not melt down, it insists on the inner
|
||||
-- 7x7x7 portion (from the core out to the blast-resistant concrete)
|
||||
-- being intact. Intactness only depends on the number of nodes of the
|
||||
-- right type in each layer. The water layer must have water in all but
|
||||
-- at most one node; the steel and blast-resistant concrete layers must
|
||||
-- have the right material in all but at most two nodes. The permitted
|
||||
-- gaps are meant for the cable and man-hole, but can actually be anywhere
|
||||
-- and contain anything. For the reactor to be useful, a cable must
|
||||
-- connect to the core, but it can go in any direction.
|
||||
--
|
||||
-- The outer concrete layer of the standard structure is not required
|
||||
-- for the reactor to operate. It is noted here because it used to
|
||||
-- be mandatory, and for historical reasons (that it predates the
|
||||
-- implementation of radiation) it needs to continue being adequate
|
||||
-- shielding of legacy reactors. If it ever ceases to be adequate
|
||||
-- shielding for new reactors, legacy ones should be grandfathered.
|
||||
local reactor_structure_badness = function(pos)
|
||||
--[[
|
||||
The standard reactor structure consists of a 9x9x9 cube. A cross
|
||||
section through the middle:
|
||||
|
||||
CCCC CCCC
|
||||
CBBB BBBC
|
||||
CBSS SSBC
|
||||
CBSWWWSBC
|
||||
CBSW#WSBC
|
||||
CBSW|WSBC
|
||||
CBSS|SSBC
|
||||
CBBB|BBBC
|
||||
CCCC|CCCC
|
||||
C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
|
||||
W = water node, # = reactor core, | = HV cable
|
||||
|
||||
The man-hole and the HV cable are only in the middle, and the man-hole
|
||||
is optional.
|
||||
|
||||
For the reactor to operate and not melt down, it insists on the inner
|
||||
7x7x7 portion (from the core out to the blast-resistant concrete)
|
||||
being intact. Intactness only depends on the number of nodes of the
|
||||
right type in each layer. The water layer must have water in all but
|
||||
at most one node; the steel and blast-resistant concrete layers must
|
||||
have the right material in all but at most two nodes. The permitted
|
||||
gaps are meant for the cable and man-hole, but can actually be anywhere
|
||||
and contain anything. For the reactor to be useful, a cable must
|
||||
connect to the core, but it can go in any direction.
|
||||
|
||||
The outer concrete layer of the standard structure is not required
|
||||
for the reactor to operate. It is noted here because it used to
|
||||
be mandatory, and for historical reasons (that it predates the
|
||||
implementation of radiation) it needs to continue being adequate
|
||||
shielding of legacy reactors. If it ever ceases to be adequate
|
||||
shielding for new reactors, legacy ones should be grandfathered.
|
||||
--]]
|
||||
local function reactor_structure_badness(pos)
|
||||
local vm = VoxelManip()
|
||||
local pos1 = vector.subtract(pos, 3)
|
||||
local pos2 = vector.add(pos, 3)
|
||||
@ -179,14 +187,16 @@ local reactor_structure_badness = function(pos)
|
||||
return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer)
|
||||
end
|
||||
|
||||
local function meltdown_reactor(pos)
|
||||
print("A reactor melted down at "..minetest.pos_to_string(pos))
|
||||
|
||||
local function melt_down_reactor(pos)
|
||||
minetest.log("action", "A reactor melted down at "..minetest.pos_to_string(pos))
|
||||
minetest.set_node(pos, {name="technic:corium_source"})
|
||||
end
|
||||
|
||||
|
||||
minetest.register_abm({
|
||||
nodenames = {"technic:hv_nuclear_reactor_core_active"},
|
||||
interval = 1,
|
||||
interval = 4,
|
||||
chance = 1,
|
||||
action = function (pos, node)
|
||||
local meta = minetest.get_meta(pos)
|
||||
@ -194,14 +204,14 @@ minetest.register_abm({
|
||||
local accum_badness = meta:get_int("structure_accumulated_badness")
|
||||
if badness == 0 then
|
||||
if accum_badness ~= 0 then
|
||||
meta:set_int("structure_accumulated_badness", accum_badness - 1)
|
||||
meta:set_int("structure_accumulated_badness", accum_badness - 4)
|
||||
siren_clear(pos, meta)
|
||||
end
|
||||
else
|
||||
siren_danger(pos, meta)
|
||||
accum_badness = accum_badness + badness
|
||||
if accum_badness >= 100 then
|
||||
meltdown_reactor(pos)
|
||||
if accum_badness >= 25 then
|
||||
melt_down_reactor(pos)
|
||||
else
|
||||
meta:set_int("structure_accumulated_badness", accum_badness)
|
||||
end
|
||||
@ -209,40 +219,36 @@ minetest.register_abm({
|
||||
end,
|
||||
})
|
||||
|
||||
local run = function(pos, node)
|
||||
local function run(pos, node)
|
||||
local meta = minetest.get_meta(pos)
|
||||
local machine_name = S("Nuclear %s Generator Core"):format("HV")
|
||||
local burn_time = meta:get_int("burn_time") or 0
|
||||
|
||||
if burn_time >= burn_ticks or burn_time == 0 then
|
||||
local inv = meta:get_inventory()
|
||||
if not inv:is_empty("src") then
|
||||
local srclist = inv:get_list("src")
|
||||
local src_list = inv:get_list("src")
|
||||
local correct_fuel_count = 0
|
||||
for _, srcstack in pairs(srclist) do
|
||||
if srcstack then
|
||||
if srcstack:get_name() == fuel_type then
|
||||
correct_fuel_count = correct_fuel_count + 1
|
||||
end
|
||||
for _, src_stack in pairs(src_list) do
|
||||
if src_stack and src_stack:get_name() == fuel_type then
|
||||
correct_fuel_count = correct_fuel_count + 1
|
||||
end
|
||||
end
|
||||
-- Check that the reactor is complete as well
|
||||
-- as the correct number of correct fuel
|
||||
-- Check that the reactor is complete and has the correct fuel
|
||||
if correct_fuel_count == 6 and
|
||||
reactor_structure_badness(pos) == 0 then
|
||||
reactor_structure_badness(pos) == 0 then
|
||||
meta:set_int("burn_time", 1)
|
||||
technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active")
|
||||
meta:set_int("HV_EU_supply", power_supply)
|
||||
for idx, srcstack in pairs(srclist) do
|
||||
srcstack:take_item()
|
||||
inv:set_stack("src", idx, srcstack)
|
||||
for idx, src_stack in pairs(src_list) do
|
||||
src_stack:take_item()
|
||||
inv:set_stack("src", idx, src_stack)
|
||||
end
|
||||
return
|
||||
end
|
||||
end
|
||||
meta:set_int("HV_EU_supply", 0)
|
||||
meta:set_int("burn_time", 0)
|
||||
meta:set_string("infotext", S("%s Idle"):format(machine_name))
|
||||
meta:set_string("infotext", S("%s Idle"):format(reactor_desc))
|
||||
technic.swap_node(pos, "technic:hv_nuclear_reactor_core")
|
||||
meta:set_int("structure_accumulated_badness", 0)
|
||||
siren_clear(pos, meta)
|
||||
@ -250,40 +256,33 @@ local run = function(pos, node)
|
||||
burn_time = burn_time + 1
|
||||
meta:set_int("burn_time", burn_time)
|
||||
local percent = math.floor(burn_time / burn_ticks * 100)
|
||||
meta:set_string("infotext", machine_name.." ("..percent.."%)")
|
||||
meta:set_string("infotext", reactor_desc.." ("..percent.."%)")
|
||||
meta:set_int("HV_EU_supply", power_supply)
|
||||
end
|
||||
end
|
||||
|
||||
minetest.register_node("technic:hv_nuclear_reactor_core", {
|
||||
description = S("Nuclear %s Generator Core"):format("HV"),
|
||||
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
|
||||
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
|
||||
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
|
||||
description = reactor_desc,
|
||||
tiles = {"technic_hv_nuclear_reactor_core.png"},
|
||||
groups = {cracky=1, technic_machine=1, technic_hv=1},
|
||||
legacy_facedir_simple = true,
|
||||
sounds = default.node_sound_wood_defaults(),
|
||||
drawtype="nodebox",
|
||||
drawtype = "nodebox",
|
||||
paramtype = "light",
|
||||
stack_max = 1,
|
||||
node_box = {
|
||||
type = "fixed",
|
||||
fixed = nodebox
|
||||
fixed = node_box
|
||||
},
|
||||
on_construct = function(pos)
|
||||
local meta = minetest.get_meta(pos)
|
||||
meta:set_string("infotext", S("Nuclear %s Generator Core"):format("HV"))
|
||||
meta:set_int("HV_EU_supply", 0)
|
||||
-- Signal to the switching station that this device burns some
|
||||
-- sort of fuel and needs special handling
|
||||
meta:set_int("HV_EU_from_fuel", 1)
|
||||
meta:set_int("burn_time", 0)
|
||||
meta:set_string("formspec", generator_formspec)
|
||||
meta:set_string("infotext", reactor_desc)
|
||||
meta:set_string("formspec", reactor_formspec)
|
||||
local inv = meta:get_inventory()
|
||||
inv:set_size("src", 6)
|
||||
end,
|
||||
end,
|
||||
can_dig = technic.machine_can_dig,
|
||||
on_destruct = function(pos) siren_set_state(pos, "off") end,
|
||||
on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
|
||||
allow_metadata_inventory_put = technic.machine_inventory_put,
|
||||
allow_metadata_inventory_take = technic.machine_inventory_take,
|
||||
allow_metadata_inventory_move = technic.machine_inventory_move,
|
||||
@ -291,24 +290,22 @@ minetest.register_node("technic:hv_nuclear_reactor_core", {
|
||||
})
|
||||
|
||||
minetest.register_node("technic:hv_nuclear_reactor_core_active", {
|
||||
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
|
||||
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
|
||||
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
|
||||
tiles = {"technic_hv_nuclear_reactor_core.png"},
|
||||
groups = {cracky=1, technic_machine=1, technic_hv=1,
|
||||
radioactive=11000, not_in_creative_inventory=1},
|
||||
legacy_facedir_simple = true,
|
||||
sounds = default.node_sound_wood_defaults(),
|
||||
drop="technic:hv_nuclear_reactor_core",
|
||||
drawtype="nodebox",
|
||||
light_source = 15,
|
||||
drop = "technic:hv_nuclear_reactor_core",
|
||||
drawtype = "nodebox",
|
||||
light_source = 14,
|
||||
paramtype = "light",
|
||||
node_box = {
|
||||
type = "fixed",
|
||||
fixed = nodebox
|
||||
fixed = node_box
|
||||
},
|
||||
can_dig = technic.machine_can_dig,
|
||||
after_dig_node = meltdown_reactor,
|
||||
on_destruct = function(pos) siren_set_state(pos, "off") end,
|
||||
after_dig_node = melt_down_reactor,
|
||||
on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
|
||||
allow_metadata_inventory_put = technic.machine_inventory_put,
|
||||
allow_metadata_inventory_take = technic.machine_inventory_take,
|
||||
allow_metadata_inventory_move = technic.machine_inventory_move,
|
||||
@ -319,10 +316,10 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
|
||||
end,
|
||||
on_timer = function(pos, node)
|
||||
local meta = minetest.get_meta(pos)
|
||||
|
||||
|
||||
-- Connected back?
|
||||
if meta:get_int("HV_EU_timeout") > 0 then return false end
|
||||
|
||||
|
||||
local burn_time = meta:get_int("burn_time") or 0
|
||||
|
||||
if burn_time >= burn_ticks or burn_time == 0 then
|
||||
@ -333,7 +330,7 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
|
||||
siren_clear(pos, meta)
|
||||
return false
|
||||
end
|
||||
|
||||
|
||||
meta:set_int("burn_time", burn_time + 1)
|
||||
return true
|
||||
end,
|
||||
@ -342,34 +339,36 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
|
||||
technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer)
|
||||
technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer)
|
||||
|
||||
-- radioactivity
|
||||
--[[
|
||||
Radioactivity
|
||||
|
||||
Radiation resistance represents the extent to which a material
|
||||
attenuates radiation passing through it; i.e., how good a radiation
|
||||
shield it is. This is identified per node type. For materials that
|
||||
exist in real life, the radiation resistance value that this system
|
||||
uses for a node type consisting of a solid cube of that material is the
|
||||
(approximate) number of halvings of ionising radiation that is achieved
|
||||
by a meter of the material in real life. This is approximately
|
||||
proportional to density, which provides a good way to estimate it.
|
||||
Homogeneous mixtures of materials have radiation resistance computed
|
||||
by a simple weighted mean. Note that the amount of attenuation that
|
||||
a material achieves in-game is not required to be (and is not) the
|
||||
same as the attenuation achieved in real life.
|
||||
|
||||
Radiation resistance for a node type may be specified in the node
|
||||
definition, under the key "radiation_resistance". As an interim
|
||||
measure, until node definitions widely include this, this code
|
||||
knows a bunch of values for particular node types in several mods,
|
||||
and values for groups of node types. The node definition takes
|
||||
precedence if it specifies a value. Nodes for which no value at
|
||||
all is known are taken to provide no radiation resistance at all;
|
||||
this is appropriate for the majority of node types. Only node types
|
||||
consisting of a fairly homogeneous mass of material should report
|
||||
non-zero radiation resistance; anything with non-uniform geometry
|
||||
or complex internal structure should show no radiation resistance.
|
||||
Fractional resistance values are permitted.
|
||||
--]]
|
||||
|
||||
-- Radiation resistance represents the extent to which a material
|
||||
-- attenuates radiation passing through it; i.e., how good a radiation
|
||||
-- shield it is. This is identified per node type. For materials that
|
||||
-- exist in real life, the radiation resistance value that this system
|
||||
-- uses for a node type consisting of a solid cube of that material is the
|
||||
-- (approximate) number of halvings of ionising radiation that is achieved
|
||||
-- by a metre of the material in real life. This is approximately
|
||||
-- proportional to density, which provides a good way to estimate it.
|
||||
-- Homogeneous mixtures of materials have radiation resistance computed
|
||||
-- by a simple weighted mean. Note that the amount of attenuation that
|
||||
-- a material achieves in-game is not required to be (and is not) the
|
||||
-- same as the attenuation achieved in real life.
|
||||
--
|
||||
-- Radiation resistance for a node type may be specified in the node
|
||||
-- definition, under the key "radiation_resistance". As an interim
|
||||
-- measure, until node definitions widely include this, this code
|
||||
-- knows a bunch of values for particular node types in several mods,
|
||||
-- and values for groups of node types. The node definition takes
|
||||
-- precedence if it specifies a value. Nodes for which no value at
|
||||
-- all is known are taken to provide no radiation resistance at all;
|
||||
-- this is appropriate for the majority of node types. Only node types
|
||||
-- consisting of a fairly homogeneous mass of material should report
|
||||
-- non-zero radiation resistance; anything with non-uniform geometry
|
||||
-- or complex internal structure should show no radiation resistance.
|
||||
-- Fractional resistance values are permitted; two significant figures
|
||||
-- is the recommended precision.
|
||||
local default_radiation_resistance_per_node = {
|
||||
["default:brick"] = 13,
|
||||
["default:bronzeblock"] = 45,
|
||||
@ -506,12 +505,13 @@ local default_radiation_resistance_per_group = {
|
||||
wood = 1.7,
|
||||
}
|
||||
local cache_radiation_resistance = {}
|
||||
local function node_radiation_resistance(nodename)
|
||||
local eff = cache_radiation_resistance[nodename]
|
||||
local function node_radiation_resistance(node_name)
|
||||
local eff = cache_radiation_resistance[node_name]
|
||||
if eff then return eff end
|
||||
local def = minetest.registered_nodes[nodename] or {groups={}}
|
||||
eff = def.radiation_resistance or default_radiation_resistance_per_node[nodename]
|
||||
if not eff then
|
||||
local def = minetest.registered_nodes[node_name]
|
||||
eff = def and def.radiation_resistance or
|
||||
default_radiation_resistance_per_node[node_name]
|
||||
if def and not eff then
|
||||
for g, v in pairs(def.groups) do
|
||||
if v > 0 and default_radiation_resistance_per_group[g] then
|
||||
eff = default_radiation_resistance_per_group[g]
|
||||
@ -520,112 +520,113 @@ local function node_radiation_resistance(nodename)
|
||||
end
|
||||
end
|
||||
if not eff then eff = 0 end
|
||||
cache_radiation_resistance[nodename] = eff
|
||||
cache_radiation_resistance[node_name] = eff
|
||||
return eff
|
||||
end
|
||||
|
||||
-- Radioactive nodes cause damage to nearby players. The damage
|
||||
-- effect depends on the intrinsic strength of the radiation source,
|
||||
-- the distance between the source and the player, and the shielding
|
||||
-- effect of the intervening material. These determine a rate of damage;
|
||||
-- total damage caused is the integral of this over time.
|
||||
--
|
||||
-- In the absence of effective shielding, for a specific source the
|
||||
-- damage rate varies realistically in inverse proportion to the square
|
||||
-- of the distance. (Distance is measured to the player's abdomen,
|
||||
-- not to the nominal player position which corresponds to the foot.)
|
||||
-- However, if the player is inside a non-walkable (liquid or gaseous)
|
||||
-- radioactive node, the nominal distance could go to zero, yielding
|
||||
-- infinite damage. In that case, the player's body is displacing the
|
||||
-- radioactive material, so the effective distance should remain non-zero.
|
||||
-- We therefore apply a lower distance bound of sqrt(0.75) m, which is
|
||||
-- the maximum distance one can get from the node centre within the node.
|
||||
--
|
||||
-- A radioactive node is identified by being in the "radioactive" group,
|
||||
-- and the group value signifies the strength of the radiation source.
|
||||
-- The group value is the distance in millimetres from a node at which
|
||||
-- an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
|
||||
-- it is 2000 times the square root of the damage rate in HP/s that an
|
||||
-- unshielded player 1 m away will take.
|
||||
--
|
||||
-- Shielding is assessed by sampling every 0.25 m along the path
|
||||
-- from the source to the player, ignoring the source node itself.
|
||||
-- The summed shielding values from the sampled nodes yield a measure
|
||||
-- of the total amount of shielding on the path. As in reality,
|
||||
-- shielding causes exponential attenuation of radiation. However, the
|
||||
-- effect is scaled down relative to real life. A metre of a node with
|
||||
-- radiation resistance value R yields attenuation of sqrt(R)*0.1 nepers.
|
||||
-- (In real life it would be about R*0.69 nepers, by the definition
|
||||
-- of the radiation resistance values.) The sqrt part of this formula
|
||||
-- scales down the differences between shielding types, reflecting the
|
||||
-- game's simplification of making expensive materials such as gold
|
||||
-- readily available in cubic metres. The multiplicative factor in the
|
||||
-- formula scales down the difference between shielded and unshielded
|
||||
-- safe distances, avoiding the latter becoming impractically large.
|
||||
--
|
||||
-- Damage is processed at rates down to 0.25 HP/s, which in the absence of
|
||||
-- shielding is attained at the distance specified by the "radioactive"
|
||||
-- group value. Computed damage rates below 0.25 HP/s result in no
|
||||
-- damage at all to the player. This gives the player an opportunity
|
||||
-- to be safe, and limits the range at which source/player interactions
|
||||
-- need to be considered.
|
||||
local assumed_abdomen_offset = vector.new(0, 1, 0)
|
||||
local assumed_abdomen_offset_length = vector.length(assumed_abdomen_offset)
|
||||
--[[
|
||||
Radioactive nodes cause damage to nearby players. The damage
|
||||
effect depends on the intrinsic strength of the radiation source,
|
||||
the distance between the source and the player, and the shielding
|
||||
effect of the intervening material. These determine a rate of damage;
|
||||
total damage caused is the integral of this over time.
|
||||
|
||||
In the absence of effective shielding, for a specific source the
|
||||
damage rate varies realistically in inverse proportion to the square
|
||||
of the distance. (Distance is measured to the player's abdomen,
|
||||
not to the nominal player position which corresponds to the foot.)
|
||||
However, if the player is inside a non-walkable (liquid or gaseous)
|
||||
radioactive node, the nominal distance could go to zero, yielding
|
||||
infinite damage. In that case, the player's body is displacing the
|
||||
radioactive material, so the effective distance should remain non-zero.
|
||||
We therefore apply a lower distance bound of sqrt(0.75), which is
|
||||
the maximum distance one can get from the node center within the node.
|
||||
|
||||
A radioactive node is identified by being in the "radioactive" group,
|
||||
and the group value signifies the strength of the radiation source.
|
||||
The group value is 1000 times the distance from a node at which
|
||||
an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
|
||||
it is 2000 times the square root of the damage rate in HP/s that an
|
||||
unshielded player 1 node away will take.
|
||||
|
||||
Shielding is assessed by adding the shielding values of all nodes
|
||||
between the source node and the player, ignoring the source node itself.
|
||||
As in reality, shielding causes exponential attenuation of radiation.
|
||||
However, the effect is scaled down relative to real life. A node with
|
||||
radiation resistance value R yields attenuation of sqrt(R) * 0.1 nepers.
|
||||
(In real life it would be about R * 0.69 nepers, by the definition
|
||||
of the radiation resistance values.) The sqrt part of this formula
|
||||
scales down the differences between shielding types, reflecting the
|
||||
game's simplification of making expensive materials such as gold
|
||||
readily available in cubes. The multiplicative factor in the
|
||||
formula scales down the difference between shielded and unshielded
|
||||
safe distances, avoiding the latter becoming impractically large.
|
||||
|
||||
Damage is processed at rates down to 0.25 HP/s, which in the absence of
|
||||
shielding is attained at the distance specified by the "radioactive"
|
||||
group value. Computed damage rates below 0.25 HP/s result in no
|
||||
damage at all to the player. This gives the player an opportunity
|
||||
to be safe, and limits the range at which source/player interactions
|
||||
need to be considered.
|
||||
--]]
|
||||
local abdomen_offset = vector.new(0, 1, 0)
|
||||
local abdomen_offset_length = vector.length(abdomen_offset)
|
||||
local cache_scaled_shielding = {}
|
||||
|
||||
local damage_enabled = minetest.setting_getbool("enable_damage")
|
||||
local function dmg_player(pos, o)
|
||||
local pl_pos = vector.add(o:getpos(), abdomen_offset)
|
||||
local shielding = 0
|
||||
for ray_pos in technic.trace_node_ray(pos,
|
||||
vector.direction(pos, pl_pos),
|
||||
vector.distance(pos, pl_pos)) do
|
||||
if not vector.equals(ray_pos, pos) then
|
||||
local shield_name = minetest.get_node(ray_pos).name
|
||||
local shield_val = cache_scaled_shielding[sname]
|
||||
if not shield_val then
|
||||
shield_val = math.sqrt(node_radiation_resistance(shield_name)) * -0.025
|
||||
cache_scaled_shielding[shield_name] = shield_val
|
||||
end
|
||||
shielding = shielding + sval
|
||||
end
|
||||
end
|
||||
local dmg = (0.25e-6 * strength * strength * math.exp(shielding)) / math.max(0.75, dist_sq)
|
||||
if dmg >= 0.25 then
|
||||
local dmg_int = math.floor(dmg)
|
||||
-- The closer you are to getting one more damage point,
|
||||
-- the more likely it will be added.
|
||||
if math.random() < dmg - dmg_int then
|
||||
dmg_int = dmg_int + 1
|
||||
end
|
||||
if dmg_int > 0 then
|
||||
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
if damage_enabled then
|
||||
local function dmg_abm(pos, node)
|
||||
local strength = minetest.get_item_group(node.name, "radioactive")
|
||||
for _, o in pairs(minetest.get_objects_inside_radius(pos,
|
||||
strength * 0.001 + abdomen_offset_length)) do
|
||||
if o:is_player() then
|
||||
dmg_player(pos, o)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
if minetest.setting_getbool("enable_damage") then
|
||||
minetest.register_abm({
|
||||
nodenames = {"group:radioactive"},
|
||||
interval = 1,
|
||||
chance = 1,
|
||||
action = function (pos, node)
|
||||
local strength = minetest.registered_nodes[node.name].groups.radioactive
|
||||
for _, o in ipairs(minetest.get_objects_inside_radius(pos, strength*0.001 + assumed_abdomen_offset_length)) do
|
||||
if o:is_player() then
|
||||
local rel = vector.subtract(vector.add(o:getpos(), assumed_abdomen_offset), pos)
|
||||
local dist_sq = vector.length_square(rel)
|
||||
local dist = math.sqrt(dist_sq)
|
||||
local dirstep = dist == 0 and vector.new(0,0,0) or vector.divide(rel, dist*4)
|
||||
local intpos = pos
|
||||
local shielding = 0
|
||||
for intdist = 0.25, dist, 0.25 do
|
||||
intpos = vector.add(intpos, dirstep)
|
||||
local intnodepos = vector.round(intpos)
|
||||
if not vector.equals(intnodepos, pos) then
|
||||
local sname = minetest.get_node(intnodepos).name
|
||||
local sval = cache_scaled_shielding[sname]
|
||||
if not sval then
|
||||
sval = math.sqrt(node_radiation_resistance(sname)) * -0.025
|
||||
cache_scaled_shielding[sname] = sval
|
||||
end
|
||||
shielding = shielding + sval
|
||||
end
|
||||
end
|
||||
local dmg_rate = 0.25e-6 * strength*strength * math.exp(shielding) / math.max(0.75, dist_sq)
|
||||
if dmg_rate >= 0.25 then
|
||||
local dmg_int = math.floor(dmg_rate)
|
||||
if math.random() < dmg_rate-dmg_int then
|
||||
dmg_int = dmg_int + 1
|
||||
end
|
||||
if dmg_int > 0 then
|
||||
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end,
|
||||
action = dmg_abm,
|
||||
})
|
||||
end
|
||||
|
||||
-- radioactive materials that can result from destroying a reactor
|
||||
local corium_griefing = 1
|
||||
if (not technic.config:get_bool("enable_corium_griefing")) then
|
||||
corium_griefing = 0
|
||||
end
|
||||
-- Radioactive materials that can result from destroying a reactor
|
||||
local griefing = technic.config:get_bool("enable_corium_griefing")
|
||||
|
||||
for _, state in ipairs({ "flowing", "source" }) do
|
||||
for _, state in pairs({"flowing", "source"}) do
|
||||
minetest.register_node("technic:corium_"..state, {
|
||||
description = S(state == "source" and "Corium Source" or "Flowing Corium"),
|
||||
drawtype = (state == "source" and "liquid" or "flowingliquid"),
|
||||
@ -653,18 +654,18 @@ for _, state in ipairs({ "flowing", "source" }) do
|
||||
liquid_viscosity = LAVA_VISC,
|
||||
liquid_renewable = false,
|
||||
damage_per_second = 6,
|
||||
post_effect_color = { a=192, r=80, g=160, b=80 },
|
||||
post_effect_color = {a=192, r=80, g=160, b=80},
|
||||
groups = {
|
||||
liquid = 2,
|
||||
hot = 3,
|
||||
igniter = corium_griefing,
|
||||
igniter = (griefing and 1 or 0),
|
||||
radioactive = (state == "source" and 32000 or 16000),
|
||||
not_in_creative_inventory = (state == "flowing" and 1 or nil),
|
||||
},
|
||||
})
|
||||
end
|
||||
|
||||
if bucket and bucket.register_liquid then
|
||||
if rawget(_G, "bucket") and bucket.register_liquid then
|
||||
bucket.register_liquid(
|
||||
"technic:corium_source",
|
||||
"technic:corium_flowing",
|
||||
@ -676,12 +677,11 @@ end
|
||||
|
||||
minetest.register_node("technic:chernobylite_block", {
|
||||
description = S("Chernobylite Block"),
|
||||
tiles = { "technic_chernobylite_block.png" },
|
||||
tiles = {"technic_chernobylite_block.png"},
|
||||
is_ground_content = true,
|
||||
groups = { cracky=1, radioactive=5000, level=2 },
|
||||
groups = {cracky=1, radioactive=5000, level=2},
|
||||
sounds = default.node_sound_stone_defaults(),
|
||||
light_source = 2,
|
||||
|
||||
})
|
||||
|
||||
minetest.register_abm({
|
||||
@ -689,25 +689,36 @@ minetest.register_abm({
|
||||
neighbors = {"technic:corium_source"},
|
||||
interval = 1,
|
||||
chance = 1,
|
||||
action = function (pos, node)
|
||||
action = function(pos, node)
|
||||
minetest.remove_node(pos)
|
||||
end,
|
||||
})
|
||||
|
||||
if (corium_griefing == 1) then
|
||||
minetest.register_abm({
|
||||
nodenames = {"technic:corium_flowing"},
|
||||
neighbors = {"group:water"},
|
||||
interval = 1,
|
||||
chance = 1,
|
||||
action = function(pos, node)
|
||||
minetest.set_node(pos, {name="technic:chernobylite_block"})
|
||||
end,
|
||||
})
|
||||
|
||||
minetest.register_abm({
|
||||
nodenames = {"technic:corium_flowing"},
|
||||
interval = 5,
|
||||
chance = (griefing and 10 or 1),
|
||||
action = function(pos, node)
|
||||
minetest.set_node(pos, {name="technic:chernobylite_block"})
|
||||
end,
|
||||
})
|
||||
|
||||
if griefing then
|
||||
minetest.register_abm({
|
||||
nodenames = {"technic:corium_flowing"},
|
||||
interval = 5,
|
||||
chance = 10,
|
||||
action = function (pos, node)
|
||||
minetest.set_node(pos, {name="technic:chernobylite_block"})
|
||||
end,
|
||||
})
|
||||
minetest.register_abm({
|
||||
nodenames = { "technic:corium_source", "technic:corium_flowing" },
|
||||
nodenames = {"technic:corium_source", "technic:corium_flowing"},
|
||||
interval = 4,
|
||||
chance = 4,
|
||||
action = function (pos, node)
|
||||
action = function(pos, node)
|
||||
for _, offset in ipairs({
|
||||
vector.new(1,0,0),
|
||||
vector.new(-1,0,0),
|
||||
@ -722,3 +733,4 @@ if (corium_griefing == 1) then
|
||||
end,
|
||||
})
|
||||
end
|
||||
|
||||
|
Reference in New Issue
Block a user