Changes:
  * Make rayIter a global utility, and use it for radiation too.
  * prettynum -> pretty_num and cleanup.
  * Remove resolve_name/function_exists (unused).
  * Cleanup nuclear reactor code.
This commit is contained in:
ShadowNinja 2016-03-12 13:28:01 -05:00
parent 4a993c2de8
commit 85a984982c
10 changed files with 398 additions and 392 deletions

View File

@ -1,27 +1,38 @@
--load config
local sepchar = nil
local digit_sep_esc
do
local sepcode = technic.config:get("thousand_separator")
--default is SI style
sepchar = sepcode and string.char(sepcode) or " "
baresepchar = sepchar
--handling if sepchar is magic...
for magic in string.gmatch("().%+-*?[^$", ".") do
if sepchar == magic then sepchar = "%"..sepchar end
local sep = technic.config:get("digit_separator")
sep = tonumber(sep) and string.char(sep) or sep or " "
-- Escape for gsub
for magic in ("().%+-*?[^$"):gmatch(".") do
if sep == magic then
sep = "%"..sep
end
end
digit_sep_esc = sep
end
-- Only changes name, keeps other params
function technic.pretty_num(num)
local str, k = tostring(num), nil
repeat
str, k = str:gsub("^(-?%d+)(%d%d%d)", "%1"..digit_sep_esc.."%2")
until k == 0
return str
end
--- Same as minetest.swap_node, but only changes name
-- and doesn't re-set if already set.
function technic.swap_node(pos, name)
local node = minetest.get_node(pos)
if node.name ~= name then
node.name = name
minetest.swap_node(pos, node)
end
return node.name
end
-- Fully charge RE chargeable item.
--- Fully charge RE chargeable item.
-- Must be defined early to reference in item definitions.
function technic.refill_RE_charge(stack)
local max_charge = technic.power_tools[stack:get_name()]
@ -33,35 +44,83 @@ function technic.refill_RE_charge(stack)
return stack
end
local function resolve_name(function_name)
local a = _G
for key in string.gmatch(function_name, "([^%.]+)(%.?)") do
if a[key] then
a = a[key]
else
return nil
end
end
return a
end
function technic.function_exists(function_name)
return type(resolve_name(function_name)) == 'function'
end
-- if the node is loaded, returns it. If it isn't loaded, load it and return nil.
-- If the node is loaded, returns it. If it isn't loaded, load it and return nil.
function technic.get_or_load_node(pos)
local node_or_nil = minetest.get_node_or_nil(pos)
if node_or_nil then return node_or_nil end
local node = minetest.get_node_or_nil(pos)
if node then return node end
local vm = VoxelManip()
local MinEdge, MaxEdge = vm:read_from_map(pos, pos)
return nil
end
function technic.prettynum(num)
local str, k = tostring(num), nil
repeat
str, k = str:gsub("^(-?%d+)(%d%d%d)", "%1"..sepchar.."%2")
until k == 0
return str
technic.tube_inject_item = pipeworks.tube_inject_item or function(pos, start_pos, velocity, item)
local tubed = pipeworks.tube_item(vector.new(pos), item)
tubed:get_luaentity().start_pos = vector.new(start_pos)
tubed:setvelocity(velocity)
tubed:setacceleration(vector.new(0, 0, 0))
end
-- Based on code by Uberi: https://gist.github.com/Uberi/3125280
function technic.trace_node_ray(pos, dir, range)
local p = vector.round(pos)
local x_step, y_step, z_step = 0, 0, 0
local x_component, y_component, z_component = 0, 0, 0
local x_intersect, y_intersect, z_intersect = 0, 0, 0
if dir.x == 0 then
x_intersect = math.huge
elseif dir.x > 0 then
x_step = 1
x_component = 1 / dir.x
x_intersect = x_component
else
x_step = -1
x_component = 1 / -dir.x
end
if dir.y == 0 then
y_intersect = math.huge
elseif dir.y > 0 then
y_step = 1
y_component = 1 / dir.y
y_intersect = y_component
else
y_step = -1
y_component = 1 / -dir.y
end
if dir.z == 0 then
z_intersect = math.huge
elseif dir.z > 0 then
z_step = 1
z_component = 1 / dir.z
z_intersect = z_component
else
z_step = -1
z_component = 1 / -dir.z
end
return function()
if x_intersect < y_intersect then
if x_intersect < z_intersect then
p.x = p.x + x_step
x_intersect = x_intersect + x_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
elseif y_intersect < z_intersect then
p.y = p.y + y_step
y_intersect = y_intersect + y_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
if vector.distance(pos, p) > range then
return nil
end
return p
end
end

View File

@ -2,22 +2,18 @@
-- namespace: technic
-- (c) 2012-2013 by RealBadAngel <mk@realbadangel.pl>
local load_start = os.clock()
technic = rawget(_G, "technic") or {}
technic.creative_mode = minetest.setting_getbool("creative_mode")
technic.tube_inject_item = pipeworks.tube_inject_item or function (pos, start_pos, velocity, item)
local tubed = pipeworks.tube_item(vector.new(pos), item)
tubed:get_luaentity().start_pos = vector.new(start_pos)
tubed:setvelocity(velocity)
tubed:setacceleration(vector.new(0, 0, 0))
end
local load_start = os.clock()
local modpath = minetest.get_modpath("technic")
technic.modpath = modpath
-- Boilerplate to support intllib
if minetest.get_modpath("intllib") then
if rawget(_G, "intllib") then
technic.getter = intllib.Getter()
else
technic.getter = function(s,a,...)if a==nil then return s end a={a,...}return s:gsub("(@?)@(%(?)(%d+)(%)?)",function(e,o,n,c)if e==""then return a[tonumber(n)]..(o==""and c or"")else return"@"..o..n..c end end) end

View File

@ -1,24 +1,24 @@
-- The enriched uranium rod driven EU generator.
-- A very large and advanced machine providing vast amounts of power.
-- Very efficient but also expensive to run as it needs uranium. (10000EU 86400 ticks (one week))
-- Provides HV EUs that can be down converted as needed.
--
-- The nuclear reactor core needs water and a protective shield to work.
-- This is checked now and then and if the machine is tampered with... BOOM!
--[[
The enriched uranium rod driven EU generator.
A very large and advanced machine providing vast amounts of power.
Very efficient but also expensive to run as it needs uranium.
Provides 10000 HV EUs for one week (only counted when loaded).
local burn_ticks = 7 * 24 * 60 * 60 -- (seconds).
local power_supply = 100000 -- EUs
local fuel_type = "technic:uranium_fuel" -- The reactor burns this stuff
The nuclear reactor core requires a casing of water and a protective
shield to work. This is checked now and then and if the casing is not
intact the reactor will melt down!
--]]
local burn_ticks = 7 * 24 * 60 * 60 -- Seconds
local power_supply = 100000 -- EUs
local fuel_type = "technic:uranium_fuel" -- The reactor burns this
local S = technic.getter
if not vector.length_square then
vector.length_square = function (v)
return v.x*v.x + v.y*v.y + v.z*v.z
end
end
local reactor_desc = S("@1 Nuclear Reactor Core", S("HV")),
-- FIXME: recipe must make more sense like a rod recepticle, steam chamber, HV generator?
-- FIXME: Recipe should make more sense like a rod recepticle, steam chamber, HV generator?
minetest.register_craft({
output = 'technic:hv_nuclear_reactor_core',
recipe = {
@ -28,7 +28,7 @@ minetest.register_craft({
}
})
local generator_formspec =
local reactor_formspec =
"invsize[8,9;]"..
"label[0,0;"..S("Nuclear Reactor Rod Compartment").."]"..
"list[current_name;src;2,1;3,2;]"..
@ -36,103 +36,111 @@ local generator_formspec =
"listring[]"
-- "Boxy sphere"
local nodebox = {
{ -0.353, -0.353, -0.353, 0.353, 0.353, 0.353 }, -- Box
{ -0.495, -0.064, -0.064, 0.495, 0.064, 0.064 }, -- Circle +-x
{ -0.483, -0.128, -0.128, 0.483, 0.128, 0.128 },
{ -0.462, -0.191, -0.191, 0.462, 0.191, 0.191 },
{ -0.433, -0.249, -0.249, 0.433, 0.249, 0.249 },
{ -0.397, -0.303, -0.303, 0.397, 0.303, 0.303 },
{ -0.305, -0.396, -0.305, 0.305, 0.396, 0.305 }, -- Circle +-y
{ -0.250, -0.432, -0.250, 0.250, 0.432, 0.250 },
{ -0.191, -0.461, -0.191, 0.191, 0.461, 0.191 },
{ -0.130, -0.482, -0.130, 0.130, 0.482, 0.130 },
{ -0.066, -0.495, -0.066, 0.066, 0.495, 0.066 },
{ -0.064, -0.064, -0.495, 0.064, 0.064, 0.495 }, -- Circle +-z
{ -0.128, -0.128, -0.483, 0.128, 0.128, 0.483 },
{ -0.191, -0.191, -0.462, 0.191, 0.191, 0.462 },
{ -0.249, -0.249, -0.433, 0.249, 0.249, 0.433 },
{ -0.303, -0.303, -0.397, 0.303, 0.303, 0.397 },
local node_box = {
{-0.353, -0.353, -0.353, 0.353, 0.353, 0.353}, -- Box
{-0.495, -0.064, -0.064, 0.495, 0.064, 0.064}, -- Circle +-x
{-0.483, -0.128, -0.128, 0.483, 0.128, 0.128},
{-0.462, -0.191, -0.191, 0.462, 0.191, 0.191},
{-0.433, -0.249, -0.249, 0.433, 0.249, 0.249},
{-0.397, -0.303, -0.303, 0.397, 0.303, 0.303},
{-0.305, -0.396, -0.305, 0.305, 0.396, 0.305}, -- Circle +-y
{-0.250, -0.432, -0.250, 0.250, 0.432, 0.250},
{-0.191, -0.461, -0.191, 0.191, 0.461, 0.191},
{-0.130, -0.482, -0.130, 0.130, 0.482, 0.130},
{-0.066, -0.495, -0.066, 0.066, 0.495, 0.066},
{-0.064, -0.064, -0.495, 0.064, 0.064, 0.495}, -- Circle +-z
{-0.128, -0.128, -0.483, 0.128, 0.128, 0.483},
{-0.191, -0.191, -0.462, 0.191, 0.191, 0.462},
{-0.249, -0.249, -0.433, 0.249, 0.249, 0.433},
{-0.303, -0.303, -0.397, 0.303, 0.303, 0.397},
}
local SS_OFF = 0
local SS_DANGER = 1
local SS_CLEAR = 2
local reactor_siren = {}
local function siren_set_state(pos, newstate)
local function siren_set_state(pos, state)
local hpos = minetest.hash_node_position(pos)
local siren = reactor_siren[hpos]
if not siren then
if newstate == "off" then return end
siren = {state="off"}
if state == SS_OFF then return end
siren = {state=SS_OFF}
reactor_siren[hpos] = siren
end
if newstate == "danger" and siren.state ~= "danger" then
if state == SS_DANGER and siren.state ~= SS_DANGER then
if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48})
siren.state = "danger"
elseif newstate == "clear" then
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop",
{pos=pos, gain=1.5, loop=true, max_hear_distance=48})
siren.state = SS_DANGER
elseif state == SS_CLEAR then
if siren.handle then minetest.sound_stop(siren.handle) end
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48})
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear",
{pos=pos, gain=1.5, loop=false, max_hear_distance=48})
siren.handle = clear_handle
siren.state = "clear"
minetest.after(10, function ()
if siren.handle == clear_handle then
minetest.sound_stop(clear_handle)
if reactor_siren[hpos] == siren then
reactor_siren[hpos] = nil
end
siren.state = SS_CLEAR
minetest.after(10, function()
if siren.handle ~= clear_handle then return end
minetest.sound_stop(clear_handle)
if reactor_siren[hpos] == siren then
reactor_siren[hpos] = nil
end
end)
elseif newstate == "off" and siren.state ~= "off" then
elseif state == SS_OFF and siren.state ~= SS_OFF then
if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = nil
reactor_siren[hpos] = nil
end
end
local function siren_danger(pos, meta)
meta:set_int("siren", 1)
siren_set_state(pos, "danger")
siren_set_state(pos, SS_DANGER)
end
local function siren_clear(pos, meta)
if meta:get_int("siren") ~= 0 then
siren_set_state(pos, "clear")
siren_set_state(pos, SS_CLEAR)
meta:set_int("siren", 0)
end
end
-- The standard reactor structure consists of a 9x9x9 cube. A cross
-- section through the middle:
--
-- CCCC CCCC
-- CBBB BBBC
-- CBSS SSBC
-- CBSWWWSBC
-- CBSW#WSBC
-- CBSW|WSBC
-- CBSS|SSBC
-- CBBB|BBBC
-- CCCC|CCCC
-- C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
-- W = water node, # = reactor core, | = HV cable
--
-- The man-hole and the HV cable are only in the middle, and the man-hole
-- is optional.
--
-- For the reactor to operate and not melt down, it insists on the inner
-- 7x7x7 portion (from the core out to the blast-resistant concrete)
-- being intact. Intactness only depends on the number of nodes of the
-- right type in each layer. The water layer must have water in all but
-- at most one node; the steel and blast-resistant concrete layers must
-- have the right material in all but at most two nodes. The permitted
-- gaps are meant for the cable and man-hole, but can actually be anywhere
-- and contain anything. For the reactor to be useful, a cable must
-- connect to the core, but it can go in any direction.
--
-- The outer concrete layer of the standard structure is not required
-- for the reactor to operate. It is noted here because it used to
-- be mandatory, and for historical reasons (that it predates the
-- implementation of radiation) it needs to continue being adequate
-- shielding of legacy reactors. If it ever ceases to be adequate
-- shielding for new reactors, legacy ones should be grandfathered.
local reactor_structure_badness = function(pos)
--[[
The standard reactor structure consists of a 9x9x9 cube. A cross
section through the middle:
CCCC CCCC
CBBB BBBC
CBSS SSBC
CBSWWWSBC
CBSW#WSBC
CBSW|WSBC
CBSS|SSBC
CBBB|BBBC
CCCC|CCCC
C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
W = water node, # = reactor core, | = HV cable
The man-hole and the HV cable are only in the middle, and the man-hole
is optional.
For the reactor to operate and not melt down, it insists on the inner
7x7x7 portion (from the core out to the blast-resistant concrete)
being intact. Intactness only depends on the number of nodes of the
right type in each layer. The water layer must have water in all but
at most one node; the steel and blast-resistant concrete layers must
have the right material in all but at most two nodes. The permitted
gaps are meant for the cable and man-hole, but can actually be anywhere
and contain anything. For the reactor to be useful, a cable must
connect to the core, but it can go in any direction.
The outer concrete layer of the standard structure is not required
for the reactor to operate. It is noted here because it used to
be mandatory, and for historical reasons (that it predates the
implementation of radiation) it needs to continue being adequate
shielding of legacy reactors. If it ever ceases to be adequate
shielding for new reactors, legacy ones should be grandfathered.
--]]
local function reactor_structure_badness(pos)
local vm = VoxelManip()
local pos1 = vector.subtract(pos, 3)
local pos2 = vector.add(pos, 3)
@ -179,14 +187,16 @@ local reactor_structure_badness = function(pos)
return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer)
end
local function meltdown_reactor(pos)
print("A reactor melted down at "..minetest.pos_to_string(pos))
local function melt_down_reactor(pos)
minetest.log("action", "A reactor melted down at "..minetest.pos_to_string(pos))
minetest.set_node(pos, {name="technic:corium_source"})
end
minetest.register_abm({
nodenames = {"technic:hv_nuclear_reactor_core_active"},
interval = 1,
interval = 4,
chance = 1,
action = function (pos, node)
local meta = minetest.get_meta(pos)
@ -194,14 +204,14 @@ minetest.register_abm({
local accum_badness = meta:get_int("structure_accumulated_badness")
if badness == 0 then
if accum_badness ~= 0 then
meta:set_int("structure_accumulated_badness", accum_badness - 1)
meta:set_int("structure_accumulated_badness", accum_badness - 4)
siren_clear(pos, meta)
end
else
siren_danger(pos, meta)
accum_badness = accum_badness + badness
if accum_badness >= 100 then
meltdown_reactor(pos)
if accum_badness >= 25 then
melt_down_reactor(pos)
else
meta:set_int("structure_accumulated_badness", accum_badness)
end
@ -209,40 +219,36 @@ minetest.register_abm({
end,
})
local run = function(pos, node)
local function run(pos, node)
local meta = minetest.get_meta(pos)
local machine_name = S("Nuclear %s Generator Core"):format("HV")
local burn_time = meta:get_int("burn_time") or 0
if burn_time >= burn_ticks or burn_time == 0 then
local inv = meta:get_inventory()
if not inv:is_empty("src") then
local srclist = inv:get_list("src")
local src_list = inv:get_list("src")
local correct_fuel_count = 0
for _, srcstack in pairs(srclist) do
if srcstack then
if srcstack:get_name() == fuel_type then
correct_fuel_count = correct_fuel_count + 1
end
for _, src_stack in pairs(src_list) do
if src_stack and src_stack:get_name() == fuel_type then
correct_fuel_count = correct_fuel_count + 1
end
end
-- Check that the reactor is complete as well
-- as the correct number of correct fuel
-- Check that the reactor is complete and has the correct fuel
if correct_fuel_count == 6 and
reactor_structure_badness(pos) == 0 then
reactor_structure_badness(pos) == 0 then
meta:set_int("burn_time", 1)
technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active")
meta:set_int("HV_EU_supply", power_supply)
for idx, srcstack in pairs(srclist) do
srcstack:take_item()
inv:set_stack("src", idx, srcstack)
for idx, src_stack in pairs(src_list) do
src_stack:take_item()
inv:set_stack("src", idx, src_stack)
end
return
end
end
meta:set_int("HV_EU_supply", 0)
meta:set_int("burn_time", 0)
meta:set_string("infotext", S("%s Idle"):format(machine_name))
meta:set_string("infotext", S("%s Idle"):format(reactor_desc))
technic.swap_node(pos, "technic:hv_nuclear_reactor_core")
meta:set_int("structure_accumulated_badness", 0)
siren_clear(pos, meta)
@ -250,40 +256,33 @@ local run = function(pos, node)
burn_time = burn_time + 1
meta:set_int("burn_time", burn_time)
local percent = math.floor(burn_time / burn_ticks * 100)
meta:set_string("infotext", machine_name.." ("..percent.."%)")
meta:set_string("infotext", reactor_desc.." ("..percent.."%)")
meta:set_int("HV_EU_supply", power_supply)
end
end
minetest.register_node("technic:hv_nuclear_reactor_core", {
description = S("Nuclear %s Generator Core"):format("HV"),
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
description = reactor_desc,
tiles = {"technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1, technic_hv=1},
legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(),
drawtype="nodebox",
drawtype = "nodebox",
paramtype = "light",
stack_max = 1,
node_box = {
type = "fixed",
fixed = nodebox
fixed = node_box
},
on_construct = function(pos)
local meta = minetest.get_meta(pos)
meta:set_string("infotext", S("Nuclear %s Generator Core"):format("HV"))
meta:set_int("HV_EU_supply", 0)
-- Signal to the switching station that this device burns some
-- sort of fuel and needs special handling
meta:set_int("HV_EU_from_fuel", 1)
meta:set_int("burn_time", 0)
meta:set_string("formspec", generator_formspec)
meta:set_string("infotext", reactor_desc)
meta:set_string("formspec", reactor_formspec)
local inv = meta:get_inventory()
inv:set_size("src", 6)
end,
can_dig = technic.machine_can_dig,
on_destruct = function(pos) siren_set_state(pos, "off") end,
on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move,
@ -291,24 +290,22 @@ minetest.register_node("technic:hv_nuclear_reactor_core", {
})
minetest.register_node("technic:hv_nuclear_reactor_core_active", {
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
tiles = {"technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1, technic_hv=1,
radioactive=11000, not_in_creative_inventory=1},
legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(),
drop="technic:hv_nuclear_reactor_core",
drawtype="nodebox",
light_source = 15,
drop = "technic:hv_nuclear_reactor_core",
drawtype = "nodebox",
light_source = 14,
paramtype = "light",
node_box = {
type = "fixed",
fixed = nodebox
fixed = node_box
},
can_dig = technic.machine_can_dig,
after_dig_node = meltdown_reactor,
on_destruct = function(pos) siren_set_state(pos, "off") end,
after_dig_node = melt_down_reactor,
on_destruct = function(pos) siren_set_state(pos, SS_OFF) end,
allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move,
@ -342,34 +339,36 @@ minetest.register_node("technic:hv_nuclear_reactor_core_active", {
technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer)
technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer)
-- radioactivity
--[[
Radioactivity
Radiation resistance represents the extent to which a material
attenuates radiation passing through it; i.e., how good a radiation
shield it is. This is identified per node type. For materials that
exist in real life, the radiation resistance value that this system
uses for a node type consisting of a solid cube of that material is the
(approximate) number of halvings of ionising radiation that is achieved
by a meter of the material in real life. This is approximately
proportional to density, which provides a good way to estimate it.
Homogeneous mixtures of materials have radiation resistance computed
by a simple weighted mean. Note that the amount of attenuation that
a material achieves in-game is not required to be (and is not) the
same as the attenuation achieved in real life.
Radiation resistance for a node type may be specified in the node
definition, under the key "radiation_resistance". As an interim
measure, until node definitions widely include this, this code
knows a bunch of values for particular node types in several mods,
and values for groups of node types. The node definition takes
precedence if it specifies a value. Nodes for which no value at
all is known are taken to provide no radiation resistance at all;
this is appropriate for the majority of node types. Only node types
consisting of a fairly homogeneous mass of material should report
non-zero radiation resistance; anything with non-uniform geometry
or complex internal structure should show no radiation resistance.
Fractional resistance values are permitted.
--]]
-- Radiation resistance represents the extent to which a material
-- attenuates radiation passing through it; i.e., how good a radiation
-- shield it is. This is identified per node type. For materials that
-- exist in real life, the radiation resistance value that this system
-- uses for a node type consisting of a solid cube of that material is the
-- (approximate) number of halvings of ionising radiation that is achieved
-- by a metre of the material in real life. This is approximately
-- proportional to density, which provides a good way to estimate it.
-- Homogeneous mixtures of materials have radiation resistance computed
-- by a simple weighted mean. Note that the amount of attenuation that
-- a material achieves in-game is not required to be (and is not) the
-- same as the attenuation achieved in real life.
--
-- Radiation resistance for a node type may be specified in the node
-- definition, under the key "radiation_resistance". As an interim
-- measure, until node definitions widely include this, this code
-- knows a bunch of values for particular node types in several mods,
-- and values for groups of node types. The node definition takes
-- precedence if it specifies a value. Nodes for which no value at
-- all is known are taken to provide no radiation resistance at all;
-- this is appropriate for the majority of node types. Only node types
-- consisting of a fairly homogeneous mass of material should report
-- non-zero radiation resistance; anything with non-uniform geometry
-- or complex internal structure should show no radiation resistance.
-- Fractional resistance values are permitted; two significant figures
-- is the recommended precision.
local default_radiation_resistance_per_node = {
["default:brick"] = 13,
["default:bronzeblock"] = 45,
@ -506,12 +505,13 @@ local default_radiation_resistance_per_group = {
wood = 1.7,
}
local cache_radiation_resistance = {}
local function node_radiation_resistance(nodename)
local eff = cache_radiation_resistance[nodename]
local function node_radiation_resistance(node_name)
local eff = cache_radiation_resistance[node_name]
if eff then return eff end
local def = minetest.registered_nodes[nodename] or {groups={}}
eff = def.radiation_resistance or default_radiation_resistance_per_node[nodename]
if not eff then
local def = minetest.registered_nodes[node_name]
eff = def and def.radiation_resistance or
default_radiation_resistance_per_node[node_name]
if def and not eff then
for g, v in pairs(def.groups) do
if v > 0 and default_radiation_resistance_per_group[g] then
eff = default_radiation_resistance_per_group[g]
@ -520,112 +520,113 @@ local function node_radiation_resistance(nodename)
end
end
if not eff then eff = 0 end
cache_radiation_resistance[nodename] = eff
cache_radiation_resistance[node_name] = eff
return eff
end
-- Radioactive nodes cause damage to nearby players. The damage
-- effect depends on the intrinsic strength of the radiation source,
-- the distance between the source and the player, and the shielding
-- effect of the intervening material. These determine a rate of damage;
-- total damage caused is the integral of this over time.
--
-- In the absence of effective shielding, for a specific source the
-- damage rate varies realistically in inverse proportion to the square
-- of the distance. (Distance is measured to the player's abdomen,
-- not to the nominal player position which corresponds to the foot.)
-- However, if the player is inside a non-walkable (liquid or gaseous)
-- radioactive node, the nominal distance could go to zero, yielding
-- infinite damage. In that case, the player's body is displacing the
-- radioactive material, so the effective distance should remain non-zero.
-- We therefore apply a lower distance bound of sqrt(0.75) m, which is
-- the maximum distance one can get from the node centre within the node.
--
-- A radioactive node is identified by being in the "radioactive" group,
-- and the group value signifies the strength of the radiation source.
-- The group value is the distance in millimetres from a node at which
-- an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
-- it is 2000 times the square root of the damage rate in HP/s that an
-- unshielded player 1 m away will take.
--
-- Shielding is assessed by sampling every 0.25 m along the path
-- from the source to the player, ignoring the source node itself.
-- The summed shielding values from the sampled nodes yield a measure
-- of the total amount of shielding on the path. As in reality,
-- shielding causes exponential attenuation of radiation. However, the
-- effect is scaled down relative to real life. A metre of a node with
-- radiation resistance value R yields attenuation of sqrt(R)*0.1 nepers.
-- (In real life it would be about R*0.69 nepers, by the definition
-- of the radiation resistance values.) The sqrt part of this formula
-- scales down the differences between shielding types, reflecting the
-- game's simplification of making expensive materials such as gold
-- readily available in cubic metres. The multiplicative factor in the
-- formula scales down the difference between shielded and unshielded
-- safe distances, avoiding the latter becoming impractically large.
--
-- Damage is processed at rates down to 0.25 HP/s, which in the absence of
-- shielding is attained at the distance specified by the "radioactive"
-- group value. Computed damage rates below 0.25 HP/s result in no
-- damage at all to the player. This gives the player an opportunity
-- to be safe, and limits the range at which source/player interactions
-- need to be considered.
local assumed_abdomen_offset = vector.new(0, 1, 0)
local assumed_abdomen_offset_length = vector.length(assumed_abdomen_offset)
--[[
Radioactive nodes cause damage to nearby players. The damage
effect depends on the intrinsic strength of the radiation source,
the distance between the source and the player, and the shielding
effect of the intervening material. These determine a rate of damage;
total damage caused is the integral of this over time.
In the absence of effective shielding, for a specific source the
damage rate varies realistically in inverse proportion to the square
of the distance. (Distance is measured to the player's abdomen,
not to the nominal player position which corresponds to the foot.)
However, if the player is inside a non-walkable (liquid or gaseous)
radioactive node, the nominal distance could go to zero, yielding
infinite damage. In that case, the player's body is displacing the
radioactive material, so the effective distance should remain non-zero.
We therefore apply a lower distance bound of sqrt(0.75), which is
the maximum distance one can get from the node center within the node.
A radioactive node is identified by being in the "radioactive" group,
and the group value signifies the strength of the radiation source.
The group value is 1000 times the distance from a node at which
an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
it is 2000 times the square root of the damage rate in HP/s that an
unshielded player 1 node away will take.
Shielding is assessed by adding the shielding values of all nodes
between the source node and the player, ignoring the source node itself.
As in reality, shielding causes exponential attenuation of radiation.
However, the effect is scaled down relative to real life. A node with
radiation resistance value R yields attenuation of sqrt(R) * 0.1 nepers.
(In real life it would be about R * 0.69 nepers, by the definition
of the radiation resistance values.) The sqrt part of this formula
scales down the differences between shielding types, reflecting the
game's simplification of making expensive materials such as gold
readily available in cubes. The multiplicative factor in the
formula scales down the difference between shielded and unshielded
safe distances, avoiding the latter becoming impractically large.
Damage is processed at rates down to 0.25 HP/s, which in the absence of
shielding is attained at the distance specified by the "radioactive"
group value. Computed damage rates below 0.25 HP/s result in no
damage at all to the player. This gives the player an opportunity
to be safe, and limits the range at which source/player interactions
need to be considered.
--]]
local abdomen_offset = vector.new(0, 1, 0)
local abdomen_offset_length = vector.length(abdomen_offset)
local cache_scaled_shielding = {}
local damage_enabled = minetest.setting_getbool("enable_damage")
local function dmg_player(pos, o)
local pl_pos = vector.add(o:getpos(), abdomen_offset)
local shielding = 0
for ray_pos in technic.trace_node_ray(pos,
vector.direction(pos, pl_pos),
vector.distance(pos, pl_pos)) do
if not vector.equals(ray_pos, pos) then
local shield_name = minetest.get_node(ray_pos).name
local shield_val = cache_scaled_shielding[sname]
if not shield_val then
shield_val = math.sqrt(node_radiation_resistance(shield_name)) * -0.025
cache_scaled_shielding[shield_name] = shield_val
end
shielding = shielding + sval
end
end
local dmg = (0.25e-6 * strength * strength * math.exp(shielding)) / math.max(0.75, dist_sq)
if dmg >= 0.25 then
local dmg_int = math.floor(dmg)
-- The closer you are to getting one more damage point,
-- the more likely it will be added.
if math.random() < dmg - dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
end
end
end
if damage_enabled then
local function dmg_abm(pos, node)
local strength = minetest.get_item_group(node.name, "radioactive")
for _, o in pairs(minetest.get_objects_inside_radius(pos,
strength * 0.001 + abdomen_offset_length)) do
if o:is_player() then
dmg_player(pos, o)
end
end
end
if minetest.setting_getbool("enable_damage") then
minetest.register_abm({
nodenames = {"group:radioactive"},
interval = 1,
chance = 1,
action = function (pos, node)
local strength = minetest.registered_nodes[node.name].groups.radioactive
for _, o in ipairs(minetest.get_objects_inside_radius(pos, strength*0.001 + assumed_abdomen_offset_length)) do
if o:is_player() then
local rel = vector.subtract(vector.add(o:getpos(), assumed_abdomen_offset), pos)
local dist_sq = vector.length_square(rel)
local dist = math.sqrt(dist_sq)
local dirstep = dist == 0 and vector.new(0,0,0) or vector.divide(rel, dist*4)
local intpos = pos
local shielding = 0
for intdist = 0.25, dist, 0.25 do
intpos = vector.add(intpos, dirstep)
local intnodepos = vector.round(intpos)
if not vector.equals(intnodepos, pos) then
local sname = minetest.get_node(intnodepos).name
local sval = cache_scaled_shielding[sname]
if not sval then
sval = math.sqrt(node_radiation_resistance(sname)) * -0.025
cache_scaled_shielding[sname] = sval
end
shielding = shielding + sval
end
end
local dmg_rate = 0.25e-6 * strength*strength * math.exp(shielding) / math.max(0.75, dist_sq)
if dmg_rate >= 0.25 then
local dmg_int = math.floor(dmg_rate)
if math.random() < dmg_rate-dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
end
end
end
end
end,
action = dmg_abm,
})
end
-- radioactive materials that can result from destroying a reactor
local corium_griefing = 1
if (not technic.config:get_bool("enable_corium_griefing")) then
corium_griefing = 0
end
-- Radioactive materials that can result from destroying a reactor
local griefing = technic.config:get_bool("enable_corium_griefing")
for _, state in ipairs({ "flowing", "source" }) do
for _, state in pairs({"flowing", "source"}) do
minetest.register_node("technic:corium_"..state, {
description = S(state == "source" and "Corium Source" or "Flowing Corium"),
drawtype = (state == "source" and "liquid" or "flowingliquid"),
@ -653,18 +654,18 @@ for _, state in ipairs({ "flowing", "source" }) do
liquid_viscosity = LAVA_VISC,
liquid_renewable = false,
damage_per_second = 6,
post_effect_color = { a=192, r=80, g=160, b=80 },
post_effect_color = {a=192, r=80, g=160, b=80},
groups = {
liquid = 2,
hot = 3,
igniter = corium_griefing,
igniter = (griefing and 1 or 0),
radioactive = (state == "source" and 32000 or 16000),
not_in_creative_inventory = (state == "flowing" and 1 or nil),
},
})
end
if bucket and bucket.register_liquid then
if rawget(_G, "bucket") and bucket.register_liquid then
bucket.register_liquid(
"technic:corium_source",
"technic:corium_flowing",
@ -676,12 +677,11 @@ end
minetest.register_node("technic:chernobylite_block", {
description = S("Chernobylite Block"),
tiles = { "technic_chernobylite_block.png" },
tiles = {"technic_chernobylite_block.png"},
is_ground_content = true,
groups = { cracky=1, radioactive=5000, level=2 },
groups = {cracky=1, radioactive=5000, level=2},
sounds = default.node_sound_stone_defaults(),
light_source = 2,
})
minetest.register_abm({
@ -689,25 +689,36 @@ minetest.register_abm({
neighbors = {"technic:corium_source"},
interval = 1,
chance = 1,
action = function (pos, node)
action = function(pos, node)
minetest.remove_node(pos)
end,
})
if (corium_griefing == 1) then
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
neighbors = {"group:water"},
interval = 1,
chance = 1,
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
interval = 5,
chance = (griefing and 10 or 1),
action = function(pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
if griefing then
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
interval = 5,
chance = 10,
action = function (pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
minetest.register_abm({
nodenames = { "technic:corium_source", "technic:corium_flowing" },
nodenames = {"technic:corium_source", "technic:corium_flowing"},
interval = 4,
chance = 4,
action = function (pos, node)
action = function(pos, node)
for _, offset in ipairs({
vector.new(1,0,0),
vector.new(-1,0,0),
@ -722,3 +733,4 @@ if (corium_griefing == 1) then
end,
})
end

View File

@ -35,7 +35,7 @@ local run = function(pos, node)
local charge_to_give = math.floor((light + pos1.y) * 3)
charge_to_give = math.max(charge_to_give, 0)
charge_to_give = math.min(charge_to_give, 200)
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.prettynum(charge_to_give)))
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.pretty_num(charge_to_give)))
meta:set_int("LV_EU_supply", charge_to_give)
else
meta:set_string("infotext", S("%s Idle"):format(machine_name))

View File

@ -55,7 +55,7 @@ local run = function(pos, node)
meta:set_int("MV_EU_supply", power)
end
meta:set_string("infotext", S("@1 (@2 EU)", machine_name, technic.prettynum(power)))
meta:set_string("infotext", S("@1 (@2 EU)", machine_name, technic.pretty_num(power)))
end
minetest.register_node("technic:wind_mill", {

View File

@ -151,7 +151,7 @@ function technic.register_battery_box(data)
..":technic_power_meter_fg.png]")
local infotext = S("@1 Battery Box: @2/@3", tier,
technic.prettynum(current_charge), technic.prettynum(max_charge))
technic.pretty_num(current_charge), technic.pretty_num(max_charge))
if eu_input == 0 then
infotext = S("%s Idle"):format(infotext)
end

View File

@ -30,7 +30,7 @@ function technic.register_solar_array(data)
local charge_to_give = math.floor((light + pos.y) * data.power)
charge_to_give = math.max(charge_to_give, 0)
charge_to_give = math.min(charge_to_give, data.power * 50)
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.prettynum(charge_to_give)))
meta:set_string("infotext", S("@1 Active (@2 EU)", machine_name, technic.pretty_num(charge_to_give)))
meta:set_int(tier.."_EU_supply", charge_to_give)
else
meta:set_string("infotext", S("%s Idle"):format(machine_name))

View File

@ -30,7 +30,7 @@ local run = function(pos, node)
meta:set_int(from.."_EU_supply", 0)
meta:set_int(to.."_EU_demand", 0)
meta:set_int(to.."_EU_supply", input * remain)
meta:set_string("infotext", S("@1 (@2 @3 -> @4 @5)", machine_name, technic.prettynum(input), from, technic.prettynum(input * remain), to))
meta:set_string("infotext", S("@1 (@2 @3 -> @4 @5)", machine_name, technic.pretty_num(input), from, technic.pretty_num(input * remain), to))
else
meta:set_string("infotext", S("%s Has Bad Cabling"):format(machine_name))
if to then

View File

@ -289,7 +289,7 @@ minetest.register_abm({
meta:set_string("infotext",
S("@1. Supply: @2 Demand: @3",
machine_name, technic.prettynum(PR_eu_supply), technic.prettynum(RE_eu_demand)))
machine_name, technic.pretty_num(PR_eu_supply), technic.pretty_num(RE_eu_demand)))
-- If the PR supply is enough for the RE demand supply them all
if PR_eu_supply >= RE_eu_demand then

View File

@ -32,67 +32,6 @@ minetest.register_craft({
}
})
-- Based on code by Uberi: https://gist.github.com/Uberi/3125280
local function rayIter(pos, dir, range)
local p = vector.round(pos)
local x_step, y_step, z_step = 0, 0, 0
local x_component, y_component, z_component = 0, 0, 0
local x_intersect, y_intersect, z_intersect = 0, 0, 0
if dir.x == 0 then
x_intersect = math.huge
elseif dir.x > 0 then
x_step = 1
x_component = 1 / dir.x
x_intersect = x_component
else
x_step = -1
x_component = 1 / -dir.x
end
if dir.y == 0 then
y_intersect = math.huge
elseif dir.y > 0 then
y_step = 1
y_component = 1 / dir.y
y_intersect = y_component
else
y_step = -1
y_component = 1 / -dir.y
end
if dir.z == 0 then
z_intersect = math.huge
elseif dir.z > 0 then
z_step = 1
z_component = 1 / dir.z
z_intersect = z_component
else
z_step = -1
z_component = 1 / -dir.z
end
return function()
if x_intersect < y_intersect then
if x_intersect < z_intersect then
p.x = p.x + x_step
x_intersect = x_intersect + x_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
elseif y_intersect < z_intersect then
p.y = p.y + y_step
y_intersect = y_intersect + y_component
else
p.z = p.z + z_step
z_intersect = z_intersect + z_component
end
if vector.distance(pos, p) > range then
return nil
end
return p
end
end
local function laser_node(pos, node, player)
local def = minetest.registered_nodes[node.name]
if def and def.liquidtype ~= "none" then
@ -132,7 +71,7 @@ local function laser_shoot(player, range, particle_texture, sound)
texture = particle_texture .. "^[transform" .. math.random(0, 7),
})
minetest.sound_play(sound, {pos = player_pos, max_hear_distance = range})
for pos in rayIter(start_pos, dir, range) do
for pos in technic.trace_node_ray(start_pos, dir, range) do
if minetest.is_protected(pos, player_name) then
minetest.record_protection_violation(pos, player_name)
break