technic/technic/machines/HV/nuclear_reactor.lua

726 lines
26 KiB
Lua

-- The enriched uranium rod driven EU generator.
-- A very large and advanced machine providing vast amounts of power.
-- Very efficient but also expensive to run as it needs uranium. (10000EU 86400 ticks (one week))
-- Provides HV EUs that can be down converted as needed.
--
-- The nuclear reactor core needs water and a protective shield to work.
-- This is checked now and then and if the machine is tampered with... BOOM!
local burn_ticks = 7 * 24 * 60 * 60 -- (seconds).
local power_supply = 100000 -- EUs
local fuel_type = "technic:uranium_fuel" -- The reactor burns this stuff
local S = technic.getter
if not vector.length_square then
vector.length_square = function (v)
return v.x*v.x + v.y*v.y + v.z*v.z
end
end
-- FIXME: recipe must make more sense like a rod recepticle, steam chamber, HV generator?
minetest.register_craft({
output = 'technic:hv_nuclear_reactor_core',
recipe = {
{'technic:carbon_plate', 'default:obsidian_glass', 'technic:carbon_plate'},
{'technic:composite_plate', 'technic:machine_casing', 'technic:composite_plate'},
{'technic:stainless_steel_ingot', 'technic:hv_cable0', 'technic:stainless_steel_ingot'},
}
})
local generator_formspec =
"invsize[8,9;]"..
"label[0,0;"..S("Nuclear Reactor Rod Compartment").."]"..
"list[current_name;src;2,1;3,2;]"..
"list[current_player;main;0,5;8,4;]"
-- "Boxy sphere"
local nodebox = {
{ -0.353, -0.353, -0.353, 0.353, 0.353, 0.353 }, -- Box
{ -0.495, -0.064, -0.064, 0.495, 0.064, 0.064 }, -- Circle +-x
{ -0.483, -0.128, -0.128, 0.483, 0.128, 0.128 },
{ -0.462, -0.191, -0.191, 0.462, 0.191, 0.191 },
{ -0.433, -0.249, -0.249, 0.433, 0.249, 0.249 },
{ -0.397, -0.303, -0.303, 0.397, 0.303, 0.303 },
{ -0.305, -0.396, -0.305, 0.305, 0.396, 0.305 }, -- Circle +-y
{ -0.250, -0.432, -0.250, 0.250, 0.432, 0.250 },
{ -0.191, -0.461, -0.191, 0.191, 0.461, 0.191 },
{ -0.130, -0.482, -0.130, 0.130, 0.482, 0.130 },
{ -0.066, -0.495, -0.066, 0.066, 0.495, 0.066 },
{ -0.064, -0.064, -0.495, 0.064, 0.064, 0.495 }, -- Circle +-z
{ -0.128, -0.128, -0.483, 0.128, 0.128, 0.483 },
{ -0.191, -0.191, -0.462, 0.191, 0.191, 0.462 },
{ -0.249, -0.249, -0.433, 0.249, 0.249, 0.433 },
{ -0.303, -0.303, -0.397, 0.303, 0.303, 0.397 },
}
local reactor_siren = {}
local function siren_set_state(pos, newstate)
local hpos = minetest.hash_node_position(pos)
local siren = reactor_siren[hpos]
if not siren then
if newstate == "off" then return end
siren = {state="off"}
reactor_siren[hpos] = siren
end
if newstate == "danger" and siren.state ~= "danger" then
if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_danger_loop", {pos=pos, gain=1.5, loop=true, max_hear_distance=48})
siren.state = "danger"
elseif newstate == "clear" then
if siren.handle then minetest.sound_stop(siren.handle) end
local clear_handle = minetest.sound_play("technic_hv_nuclear_reactor_siren_clear", {pos=pos, gain=1.5, loop=false, max_hear_distance=48})
siren.handle = clear_handle
siren.state = "clear"
minetest.after(10, function ()
if siren.handle == clear_handle then
minetest.sound_stop(clear_handle)
if reactor_siren[hpos] == siren then
reactor_siren[hpos] = nil
end
end
end)
elseif newstate == "off" and siren.state ~= "off" then
if siren.handle then minetest.sound_stop(siren.handle) end
siren.handle = nil
reactor_siren[hpos] = nil
end
end
local function siren_danger(pos, meta)
meta:set_int("siren", 1)
siren_set_state(pos, "danger")
end
local function siren_clear(pos, meta)
if meta:get_int("siren") ~= 0 then
siren_set_state(pos, "clear")
meta:set_int("siren", 0)
end
end
-- The standard reactor structure consists of a 9x9x9 cube. A cross
-- section through the middle:
--
-- CCCC CCCC
-- CBBB BBBC
-- CBSS SSBC
-- CBSWWWSBC
-- CBSW#WSBC
-- CBSW|WSBC
-- CBSS|SSBC
-- CBBB|BBBC
-- CCCC|CCCC
-- C = Concrete, B = Blast-resistant concrete, S = Stainless Steel,
-- W = water node, # = reactor core, | = HV cable
--
-- The man-hole and the HV cable are only in the middle, and the man-hole
-- is optional.
--
-- For the reactor to operate and not melt down, it insists on the inner
-- 7x7x7 portion (from the core out to the blast-resistant concrete)
-- being intact. Intactness only depends on the number of nodes of the
-- right type in each layer. The water layer must have water in all but
-- at most one node; the steel and blast-resistant concrete layers must
-- have the right material in all but at most two nodes. The permitted
-- gaps are meant for the cable and man-hole, but can actually be anywhere
-- and contain anything. For the reactor to be useful, a cable must
-- connect to the core, but it can go in any direction.
--
-- The outer concrete layer of the standard structure is not required
-- for the reactor to operate. It is noted here because it used to
-- be mandatory, and for historical reasons (that it predates the
-- implementation of radiation) it needs to continue being adequate
-- shielding of legacy reactors. If it ever ceases to be adequate
-- shielding for new reactors, legacy ones should be grandfathered.
local reactor_structure_badness = function(pos)
local vm = VoxelManip()
local pos1 = vector.subtract(pos, 3)
local pos2 = vector.add(pos, 3)
local MinEdge, MaxEdge = vm:read_from_map(pos1, pos2)
local data = vm:get_data()
local area = VoxelArea:new({MinEdge=MinEdge, MaxEdge=MaxEdge})
local c_blast_concrete = minetest.get_content_id("technic:blast_resistant_concrete")
local c_stainless_steel = minetest.get_content_id("technic:stainless_steel_block")
local c_water_source = minetest.get_content_id("default:water_source")
local c_water_flowing = minetest.get_content_id("default:water_flowing")
local blastlayer, steellayer, waterlayer = 0, 0, 0
for z = pos1.z, pos2.z do
for y = pos1.y, pos2.y do
for x = pos1.x, pos2.x do
local cid = data[area:index(x, y, z)]
if x == pos1.x or x == pos2.x or
y == pos1.y or y == pos2.y or
z == pos1.z or z == pos2.z then
if cid == c_blast_concrete then
blastlayer = blastlayer + 1
end
elseif x == pos1.x+1 or x == pos2.x-1 or
y == pos1.y+1 or y == pos2.y-1 or
z == pos1.z+1 or z == pos2.z-1 then
if cid == c_stainless_steel then
steellayer = steellayer + 1
end
elseif x == pos1.x+2 or x == pos2.x-2 or
y == pos1.y+2 or y == pos2.y-2 or
z == pos1.z+2 or z == pos2.z-2 then
if cid == c_water_source or cid == c_water_flowing then
waterlayer = waterlayer + 1
end
end
end
end
end
if waterlayer > 25 then waterlayer = 25 end
if steellayer > 96 then steellayer = 96 end
if blastlayer > 216 then blastlayer = 216 end
return (25 - waterlayer) + (96 - steellayer) + (216 - blastlayer)
end
local function meltdown_reactor(pos)
print("A reactor melted down at "..minetest.pos_to_string(pos))
minetest.set_node(pos, {name="technic:corium_source"})
end
minetest.register_abm({
nodenames = {"technic:hv_nuclear_reactor_core_active"},
interval = 1,
chance = 1,
action = function (pos, node)
local meta = minetest.get_meta(pos)
local badness = reactor_structure_badness(pos)
local accum_badness = meta:get_int("structure_accumulated_badness")
if badness == 0 then
if accum_badness ~= 0 then
meta:set_int("structure_accumulated_badness", accum_badness - 1)
siren_clear(pos, meta)
end
else
siren_danger(pos, meta)
accum_badness = accum_badness + badness
if accum_badness >= 100 then
meltdown_reactor(pos)
else
meta:set_int("structure_accumulated_badness", accum_badness)
end
end
end,
})
local run = function(pos, node)
local meta = minetest.get_meta(pos)
local machine_name = S("Nuclear %s Generator Core"):format("HV")
local burn_time = meta:get_int("burn_time") or 0
if burn_time >= burn_ticks or burn_time == 0 then
local inv = meta:get_inventory()
if not inv:is_empty("src") then
local srclist = inv:get_list("src")
local correct_fuel_count = 0
for _, srcstack in pairs(srclist) do
if srcstack then
if srcstack:get_name() == fuel_type then
correct_fuel_count = correct_fuel_count + 1
end
end
end
-- Check that the reactor is complete as well
-- as the correct number of correct fuel
if correct_fuel_count == 6 and
reactor_structure_badness(pos) == 0 then
meta:set_int("burn_time", 1)
technic.swap_node(pos, "technic:hv_nuclear_reactor_core_active")
meta:set_int("HV_EU_supply", power_supply)
for idx, srcstack in pairs(srclist) do
srcstack:take_item()
inv:set_stack("src", idx, srcstack)
end
return
end
end
meta:set_int("HV_EU_supply", 0)
meta:set_int("burn_time", 0)
meta:set_string("infotext", S("%s Idle"):format(machine_name))
technic.swap_node(pos, "technic:hv_nuclear_reactor_core")
meta:set_int("structure_accumulated_badness", 0)
siren_clear(pos, meta)
elseif burn_time > 0 then
burn_time = burn_time + 1
meta:set_int("burn_time", burn_time)
local percent = math.floor(burn_time / burn_ticks * 100)
meta:set_string("infotext", machine_name.." ("..percent.."%)")
meta:set_int("HV_EU_supply", power_supply)
end
end
minetest.register_node("technic:hv_nuclear_reactor_core", {
description = S("Nuclear %s Generator Core"):format("HV"),
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1},
legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(),
drawtype="nodebox",
paramtype = "light",
stack_max = 1,
node_box = {
type = "fixed",
fixed = nodebox
},
on_construct = function(pos)
local meta = minetest.get_meta(pos)
meta:set_string("infotext", S("Nuclear %s Generator Core"):format("HV"))
meta:set_int("HV_EU_supply", 0)
-- Signal to the switching station that this device burns some
-- sort of fuel and needs special handling
meta:set_int("HV_EU_from_fuel", 1)
meta:set_int("burn_time", 0)
meta:set_string("formspec", generator_formspec)
local inv = meta:get_inventory()
inv:set_size("src", 6)
end,
can_dig = technic.machine_can_dig,
on_destruct = function(pos) siren_set_state(pos, "off") end,
allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move,
technic_run = run,
})
minetest.register_node("technic:hv_nuclear_reactor_core_active", {
tiles = {"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png",
"technic_hv_nuclear_reactor_core.png", "technic_hv_nuclear_reactor_core.png"},
groups = {cracky=1, technic_machine=1, radioactive=11000, not_in_creative_inventory=1},
legacy_facedir_simple = true,
sounds = default.node_sound_wood_defaults(),
drop="technic:hv_nuclear_reactor_core",
drawtype="nodebox",
light_source = 15,
paramtype = "light",
node_box = {
type = "fixed",
fixed = nodebox
},
can_dig = technic.machine_can_dig,
after_dig_node = meltdown_reactor,
on_destruct = function(pos) siren_set_state(pos, "off") end,
allow_metadata_inventory_put = technic.machine_inventory_put,
allow_metadata_inventory_take = technic.machine_inventory_take,
allow_metadata_inventory_move = technic.machine_inventory_move,
technic_run = run,
technic_on_disable = function(pos, node)
local timer = minetest.get_node_timer(pos)
timer:start(1)
end,
on_timer = function(pos, node)
local meta = minetest.get_meta(pos)
-- Connected back?
if meta:get_int("HV_EU_timeout") > 0 then return false end
local burn_time = meta:get_int("burn_time") or 0
if burn_time >= burn_ticks or burn_time == 0 then
meta:set_int("HV_EU_supply", 0)
meta:set_int("burn_time", 0)
technic.swap_node(pos, "technic:hv_nuclear_reactor_core")
meta:set_int("structure_accumulated_badness", 0)
siren_clear(pos, meta)
return false
end
meta:set_int("burn_time", burn_time + 1)
return true
end,
})
technic.register_machine("HV", "technic:hv_nuclear_reactor_core", technic.producer)
technic.register_machine("HV", "technic:hv_nuclear_reactor_core_active", technic.producer)
-- radioactivity
-- Radiation resistance represents the extent to which a material
-- attenuates radiation passing through it; i.e., how good a radiation
-- shield it is. This is identified per node type. For materials that
-- exist in real life, the radiation resistance value that this system
-- uses for a node type consisting of a solid cube of that material is the
-- (approximate) number of halvings of ionising radiation that is achieved
-- by a metre of the material in real life. This is approximately
-- proportional to density, which provides a good way to estimate it.
-- Homogeneous mixtures of materials have radiation resistance computed
-- by a simple weighted mean. Note that the amount of attenuation that
-- a material achieves in-game is not required to be (and is not) the
-- same as the attenuation achieved in real life.
--
-- Radiation resistance for a node type may be specified in the node
-- definition, under the key "radiation_resistance". As an interim
-- measure, until node definitions widely include this, this code
-- knows a bunch of values for particular node types in several mods,
-- and values for groups of node types. The node definition takes
-- precedence if it specifies a value. Nodes for which no value at
-- all is known are taken to provide no radiation resistance at all;
-- this is appropriate for the majority of node types. Only node types
-- consisting of a fairly homogeneous mass of material should report
-- non-zero radiation resistance; anything with non-uniform geometry
-- or complex internal structure should show no radiation resistance.
-- Fractional resistance values are permitted; two significant figures
-- is the recommended precision.
local default_radiation_resistance_per_node = {
["default:brick"] = 13,
["default:bronzeblock"] = 45,
["default:clay"] = 15,
["default:coalblock"] = 9.6,
["default:cobble"] = 15,
["default:copperblock"] = 46,
["default:desert_cobble"] = 15,
["default:desert_sand"] = 10,
["default:desert_stone"] = 17,
["default:desert_stonebrick"] = 17,
["default:diamondblock"] = 24,
["default:dirt"] = 8.2,
["default:dirt_with_grass"] = 8.2,
["default:dirt_with_grass_footsteps"] = 8.2,
["default:dirt_with_snow"] = 8.2,
["default:glass"] = 17,
["default:goldblock"] = 170,
["default:gravel"] = 10,
["default:ice"] = 5.6,
["default:lava_flowing"] = 8.5,
["default:lava_source"] = 17,
["default:mese"] = 21,
["default:mossycobble"] = 15,
["default:nyancat"] = 1000,
["default:nyancat_rainbow"] = 1000,
["default:obsidian"] = 18,
["default:obsidian_glass"] = 18,
["default:sand"] = 10,
["default:sandstone"] = 15,
["default:sandstonebrick"] = 15,
["default:snowblock"] = 1.7,
["default:steelblock"] = 40,
["default:stone"] = 17,
["default:stone_with_coal"] = 16,
["default:stone_with_copper"] = 20,
["default:stone_with_diamond"] = 18,
["default:stone_with_gold"] = 34,
["default:stone_with_iron"] = 20,
["default:stone_with_mese"] = 17,
["default:stonebrick"] = 17,
["default:water_flowing"] = 2.8,
["default:water_source"] = 5.6,
["farming:desert_sand_soil"] = 10,
["farming:desert_sand_soil_wet"] = 10,
["farming:soil"] = 8.2,
["farming:soil_wet"] = 8.2,
["glooptest:akalin_crystal_glass"] = 21,
["glooptest:akalinblock"] = 40,
["glooptest:alatro_crystal_glass"] = 21,
["glooptest:alatroblock"] = 40,
["glooptest:amethystblock"] = 18,
["glooptest:arol_crystal_glass"] = 21,
["glooptest:crystal_glass"] = 21,
["glooptest:emeraldblock"] = 19,
["glooptest:heavy_crystal_glass"] = 21,
["glooptest:mineral_akalin"] = 20,
["glooptest:mineral_alatro"] = 20,
["glooptest:mineral_amethyst"] = 17,
["glooptest:mineral_arol"] = 20,
["glooptest:mineral_desert_coal"] = 16,
["glooptest:mineral_desert_iron"] = 20,
["glooptest:mineral_emerald"] = 17,
["glooptest:mineral_kalite"] = 20,
["glooptest:mineral_ruby"] = 18,
["glooptest:mineral_sapphire"] = 18,
["glooptest:mineral_talinite"] = 20,
["glooptest:mineral_topaz"] = 18,
["glooptest:reinforced_crystal_glass"] = 21,
["glooptest:rubyblock"] = 27,
["glooptest:sapphireblock"] = 27,
["glooptest:talinite_crystal_glass"] = 21,
["glooptest:taliniteblock"] = 40,
["glooptest:topazblock"] = 24,
["mesecons_extrawires:mese_powered"] = 21,
["moreblocks:cactus_brick"] = 13,
["moreblocks:cactus_checker"] = 8.5,
["moreblocks:circle_stone_bricks"] = 17,
["moreblocks:clean_glass"] = 17,
["moreblocks:coal_checker"] = 9.0,
["moreblocks:coal_glass"] = 17,
["moreblocks:coal_stone"] = 17,
["moreblocks:coal_stone_bricks"] = 17,
["moreblocks:glow_glass"] = 17,
["moreblocks:grey_bricks"] = 15,
["moreblocks:iron_checker"] = 11,
["moreblocks:iron_glass"] = 17,
["moreblocks:iron_stone"] = 17,
["moreblocks:iron_stone_bricks"] = 17,
["moreblocks:plankstone"] = 9.3,
["moreblocks:split_stone_tile"] = 15,
["moreblocks:split_stone_tile_alt"] = 15,
["moreblocks:stone_tile"] = 15,
["moreblocks:super_glow_glass"] = 17,
["moreblocks:tar"] = 7.0,
["moreblocks:wood_tile"] = 1.7,
["moreblocks:wood_tile_center"] = 1.7,
["moreblocks:wood_tile_down"] = 1.7,
["moreblocks:wood_tile_flipped"] = 1.7,
["moreblocks:wood_tile_full"] = 1.7,
["moreblocks:wood_tile_left"] = 1.7,
["moreblocks:wood_tile_right"] = 1.7,
["moreblocks:wood_tile_up"] = 1.7,
["moreores:mineral_mithril"] = 18,
["moreores:mineral_silver"] = 21,
["moreores:mineral_tin"] = 19,
["moreores:mithril_block"] = 26,
["moreores:silver_block"] = 53,
["moreores:tin_block"] = 37,
["snow:snow_brick"] = 2.8,
["technic:brass_block"] = 43,
["technic:carbon_steel_block"] = 40,
["technic:cast_iron_block"] = 40,
["technic:chernobylite_block"] = 40,
["technic:chromium_block"] = 37,
["technic:corium_flowing"] = 40,
["technic:corium_source"] = 80,
["technic:granite"] = 18,
["technic:marble"] = 18,
["technic:marble_bricks"] = 18,
["technic:mineral_chromium"] = 19,
["technic:mineral_uranium"] = 71,
["technic:mineral_zinc"] = 19,
["technic:stainless_steel_block"] = 40,
["technic:zinc_block"] = 36,
["tnt:tnt"] = 11,
["tnt:tnt_burning"] = 11,
}
local default_radiation_resistance_per_group = {
concrete = 16,
tree = 3.4,
uranium_block = 500,
wood = 1.7,
}
local cache_radiation_resistance = {}
local function node_radiation_resistance(nodename)
local eff = cache_radiation_resistance[nodename]
if eff then return eff end
local def = minetest.registered_nodes[nodename] or {groups={}}
eff = def.radiation_resistance or default_radiation_resistance_per_node[nodename]
if not eff then
for g, v in pairs(def.groups) do
if v > 0 and default_radiation_resistance_per_group[g] then
eff = default_radiation_resistance_per_group[g]
break
end
end
end
if not eff then eff = 0 end
cache_radiation_resistance[nodename] = eff
return eff
end
-- Radioactive nodes cause damage to nearby players. The damage
-- effect depends on the intrinsic strength of the radiation source,
-- the distance between the source and the player, and the shielding
-- effect of the intervening material. These determine a rate of damage;
-- total damage caused is the integral of this over time.
--
-- In the absence of effective shielding, for a specific source the
-- damage rate varies realistically in inverse proportion to the square
-- of the distance. (Distance is measured to the player's abdomen,
-- not to the nominal player position which corresponds to the foot.)
-- However, if the player is inside a non-walkable (liquid or gaseous)
-- radioactive node, the nominal distance could go to zero, yielding
-- infinite damage. In that case, the player's body is displacing the
-- radioactive material, so the effective distance should remain non-zero.
-- We therefore apply a lower distance bound of sqrt(0.75) m, which is
-- the maximum distance one can get from the node centre within the node.
--
-- A radioactive node is identified by being in the "radioactive" group,
-- and the group value signifies the strength of the radiation source.
-- The group value is the distance in millimetres from a node at which
-- an unshielded player will be damaged by 0.25 HP/s. Or, equivalently,
-- it is 2000 times the square root of the damage rate in HP/s that an
-- unshielded player 1 m away will take.
--
-- Shielding is assessed by sampling every 0.25 m along the path
-- from the source to the player, ignoring the source node itself.
-- The summed shielding values from the sampled nodes yield a measure
-- of the total amount of shielding on the path. As in reality,
-- shielding causes exponential attenuation of radiation. However, the
-- effect is scaled down relative to real life. A metre of a node with
-- radiation resistance value R yields attenuation of sqrt(R)*0.1 nepers.
-- (In real life it would be about R*0.69 nepers, by the definition
-- of the radiation resistance values.) The sqrt part of this formula
-- scales down the differences between shielding types, reflecting the
-- game's simplification of making expensive materials such as gold
-- readily available in cubic metres. The multiplicative factor in the
-- formula scales down the difference between shielded and unshielded
-- safe distances, avoiding the latter becoming impractically large.
--
-- Damage is processed at rates down to 0.25 HP/s, which in the absence of
-- shielding is attained at the distance specified by the "radioactive"
-- group value. Computed damage rates below 0.25 HP/s result in no
-- damage at all to the player. This gives the player an opportunity
-- to be safe, and limits the range at which source/player interactions
-- need to be considered.
local assumed_abdomen_offset = vector.new(0, 1, 0)
local assumed_abdomen_offset_length = vector.length(assumed_abdomen_offset)
local cache_scaled_shielding = {}
minetest.register_abm({
nodenames = {"group:radioactive"},
interval = 1,
chance = 1,
action = function (pos, node)
local strength = minetest.registered_nodes[node.name].groups.radioactive
for _, o in ipairs(minetest.get_objects_inside_radius(pos, strength*0.001 + assumed_abdomen_offset_length)) do
if o:is_player() then
local rel = vector.subtract(vector.add(o:getpos(), assumed_abdomen_offset), pos)
local dist_sq = vector.length_square(rel)
local dist = math.sqrt(dist_sq)
local dirstep = dist == 0 and vector.new(0,0,0) or vector.divide(rel, dist*4)
local intpos = pos
local shielding = 0
for intdist = 0.25, dist, 0.25 do
intpos = vector.add(intpos, dirstep)
local intnodepos = vector.round(intpos)
if not vector.equals(intnodepos, pos) then
local sname = minetest.get_node(intnodepos).name
local sval = cache_scaled_shielding[sname]
if not sval then
sval = math.sqrt(node_radiation_resistance(sname)) * -0.025
cache_scaled_shielding[sname] = sval
end
shielding = shielding + sval
end
end
local dmg_rate = 0.25e-6 * strength*strength * math.exp(shielding) / math.max(0.75, dist_sq)
if dmg_rate >= 0.25 then
local dmg_int = math.floor(dmg_rate)
if math.random() < dmg_rate-dmg_int then
dmg_int = dmg_int + 1
end
if dmg_int > 0 then
o:set_hp(math.max(o:get_hp() - dmg_int, 0))
end
end
end
end
end,
})
-- radioactive materials that can result from destroying a reactor
for _, state in ipairs({ "flowing", "source" }) do
minetest.register_node("technic:corium_"..state, {
description = S(state == "source" and "Corium Source" or "Flowing Corium"),
drawtype = (state == "source" and "liquid" or "flowingliquid"),
[state == "source" and "tiles" or "special_tiles"] = {{
name = "technic_corium_"..state.."_animated.png",
animation = {
type = "vertical_frames",
aspect_w = 16,
aspect_h = 16,
length = 3.0,
},
}},
paramtype = "light",
paramtype2 = (state == "flowing" and "flowingliquid" or nil),
light_source = (state == "source" and 8 or 5),
walkable = false,
pointable = false,
diggable = false,
buildable_to = true,
drop = "",
drowning = 1,
liquidtype = state,
liquid_alternative_flowing = "technic:corium_flowing",
liquid_alternative_source = "technic:corium_source",
liquid_viscosity = LAVA_VISC,
liquid_renewable = false,
damage_per_second = 6,
post_effect_color = { a=192, r=80, g=160, b=80 },
groups = {
liquid = 2,
hot = 3,
igniter = 1,
radioactive = (state == "source" and 32000 or 16000),
not_in_creative_inventory = (state == "flowing" and 1 or nil),
},
})
end
if bucket and bucket.register_liquid then
bucket.register_liquid(
"technic:corium_source",
"technic:corium_flowing",
"technic:bucket_corium",
"technic_bucket_corium.png",
"Corium Bucket"
)
end
minetest.register_node("technic:chernobylite_block", {
description = S("Chernobylite Block"),
tiles = { "technic_chernobylite_block.png" },
is_ground_content = true,
groups = { cracky=1, radioactive=5000, level=2 },
sounds = default.node_sound_stone_defaults(),
light_source = 2,
})
minetest.register_abm({
nodenames = {"group:water"},
neighbors = {"technic:corium_source"},
interval = 1,
chance = 1,
action = function (pos, node)
minetest.remove_node(pos)
end,
})
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
neighbors = {"group:water"},
interval = 1,
chance = 1,
action = function (pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
local griefing = technic.config:get_bool("enable_corium_griefing")
minetest.register_abm({
nodenames = {"technic:corium_flowing"},
interval = 5,
chance = (griefing and 10 or 1),
action = function (pos, node)
minetest.set_node(pos, {name="technic:chernobylite_block"})
end,
})
if griefing then
minetest.register_abm({
nodenames = { "technic:corium_source", "technic:corium_flowing" },
interval = 4,
chance = 4,
action = function (pos, node)
for _, offset in ipairs({
vector.new(1,0,0),
vector.new(-1,0,0),
vector.new(0,0,1),
vector.new(0,0,-1),
vector.new(0,-1,0),
}) do
if math.random(8) == 1 then
minetest.dig_node(vector.add(pos, offset))
end
end
end,
})
end