2023-10-03 20:37:00 +02:00
|
|
|
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
|
|
// This file is part of the "Irrlicht Engine".
|
|
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
|
2023-10-09 08:57:29 +02:00
|
|
|
#pragma once
|
2023-10-03 20:37:00 +02:00
|
|
|
|
|
|
|
#include "vector3d.h"
|
|
|
|
#include "line3d.h"
|
|
|
|
#include "plane3d.h"
|
|
|
|
#include "aabbox3d.h"
|
|
|
|
|
|
|
|
namespace irr
|
|
|
|
{
|
|
|
|
namespace core
|
|
|
|
{
|
|
|
|
|
|
|
|
//! 3d triangle template class for doing collision detection and other things.
|
|
|
|
template <class T>
|
|
|
|
class triangle3d
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
//! Constructor for an all 0 triangle
|
|
|
|
triangle3d() {}
|
|
|
|
//! Constructor for triangle with given three vertices
|
|
|
|
triangle3d(const vector3d<T>& v1, const vector3d<T>& v2, const vector3d<T>& v3) : pointA(v1), pointB(v2), pointC(v3) {}
|
|
|
|
|
|
|
|
//! Equality operator
|
|
|
|
bool operator==(const triangle3d<T>& other) const
|
|
|
|
{
|
|
|
|
return other.pointA==pointA && other.pointB==pointB && other.pointC==pointC;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Inequality operator
|
|
|
|
bool operator!=(const triangle3d<T>& other) const
|
|
|
|
{
|
|
|
|
return !(*this==other);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Determines if the triangle is totally inside a bounding box.
|
|
|
|
/** \param box Box to check.
|
|
|
|
\return True if triangle is within the box, otherwise false. */
|
|
|
|
bool isTotalInsideBox(const aabbox3d<T>& box) const
|
|
|
|
{
|
|
|
|
return (box.isPointInside(pointA) &&
|
|
|
|
box.isPointInside(pointB) &&
|
|
|
|
box.isPointInside(pointC));
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Determines if the triangle is totally outside a bounding box.
|
|
|
|
/** \param box Box to check.
|
|
|
|
\return True if triangle is outside the box, otherwise false. */
|
|
|
|
bool isTotalOutsideBox(const aabbox3d<T>& box) const
|
|
|
|
{
|
|
|
|
return ((pointA.X > box.MaxEdge.X && pointB.X > box.MaxEdge.X && pointC.X > box.MaxEdge.X) ||
|
|
|
|
|
|
|
|
(pointA.Y > box.MaxEdge.Y && pointB.Y > box.MaxEdge.Y && pointC.Y > box.MaxEdge.Y) ||
|
|
|
|
(pointA.Z > box.MaxEdge.Z && pointB.Z > box.MaxEdge.Z && pointC.Z > box.MaxEdge.Z) ||
|
|
|
|
(pointA.X < box.MinEdge.X && pointB.X < box.MinEdge.X && pointC.X < box.MinEdge.X) ||
|
|
|
|
(pointA.Y < box.MinEdge.Y && pointB.Y < box.MinEdge.Y && pointC.Y < box.MinEdge.Y) ||
|
|
|
|
(pointA.Z < box.MinEdge.Z && pointB.Z < box.MinEdge.Z && pointC.Z < box.MinEdge.Z));
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Get the closest point on a triangle to a point on the same plane.
|
|
|
|
/** \param p Point which must be on the same plane as the triangle.
|
|
|
|
\return The closest point of the triangle */
|
|
|
|
core::vector3d<T> closestPointOnTriangle(const core::vector3d<T>& p) const
|
|
|
|
{
|
|
|
|
const core::vector3d<T> rab = line3d<T>(pointA, pointB).getClosestPoint(p);
|
|
|
|
const core::vector3d<T> rbc = line3d<T>(pointB, pointC).getClosestPoint(p);
|
|
|
|
const core::vector3d<T> rca = line3d<T>(pointC, pointA).getClosestPoint(p);
|
|
|
|
|
|
|
|
const T d1 = rab.getDistanceFrom(p);
|
|
|
|
const T d2 = rbc.getDistanceFrom(p);
|
|
|
|
const T d3 = rca.getDistanceFrom(p);
|
|
|
|
|
|
|
|
if (d1 < d2)
|
|
|
|
return d1 < d3 ? rab : rca;
|
|
|
|
|
|
|
|
return d2 < d3 ? rbc : rca;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Check if a point is inside the triangle (border-points count also as inside)
|
|
|
|
/*
|
|
|
|
\param p Point to test. Assumes that this point is already
|
|
|
|
on the plane of the triangle.
|
|
|
|
\return True if the point is inside the triangle, otherwise false. */
|
|
|
|
bool isPointInside(const vector3d<T>& p) const
|
|
|
|
{
|
|
|
|
vector3d<f64> af64((f64)pointA.X, (f64)pointA.Y, (f64)pointA.Z);
|
|
|
|
vector3d<f64> bf64((f64)pointB.X, (f64)pointB.Y, (f64)pointB.Z);
|
|
|
|
vector3d<f64> cf64((f64)pointC.X, (f64)pointC.Y, (f64)pointC.Z);
|
|
|
|
vector3d<f64> pf64((f64)p.X, (f64)p.Y, (f64)p.Z);
|
|
|
|
return (isOnSameSide(pf64, af64, bf64, cf64) &&
|
|
|
|
isOnSameSide(pf64, bf64, af64, cf64) &&
|
|
|
|
isOnSameSide(pf64, cf64, af64, bf64));
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Check if a point is inside the triangle (border-points count also as inside)
|
|
|
|
/** This method uses a barycentric coordinate system.
|
|
|
|
It is faster than isPointInside but is more susceptible to floating point rounding
|
|
|
|
errors.
|
|
|
|
\param p Point to test. Assumes that this point is already
|
|
|
|
on the plane of the triangle.
|
|
|
|
\return True if point is inside the triangle, otherwise false. */
|
|
|
|
bool isPointInsideFast(const vector3d<T>& p) const
|
|
|
|
{
|
|
|
|
const vector3d<T> a = pointC - pointA;
|
|
|
|
const vector3d<T> b = pointB - pointA;
|
|
|
|
const vector3d<T> c = p - pointA;
|
|
|
|
|
|
|
|
const f64 dotAA = a.dotProduct( a);
|
|
|
|
const f64 dotAB = a.dotProduct( b);
|
|
|
|
const f64 dotAC = a.dotProduct( c);
|
|
|
|
const f64 dotBB = b.dotProduct( b);
|
|
|
|
const f64 dotBC = b.dotProduct( c);
|
|
|
|
|
|
|
|
// get coordinates in barycentric coordinate system
|
|
|
|
const f64 invDenom = 1/(dotAA * dotBB - dotAB * dotAB);
|
|
|
|
const f64 u = (dotBB * dotAC - dotAB * dotBC) * invDenom;
|
|
|
|
const f64 v = (dotAA * dotBC - dotAB * dotAC ) * invDenom;
|
|
|
|
|
|
|
|
// We count border-points as inside to keep downward compatibility.
|
|
|
|
// Rounding-error also needed for some test-cases.
|
|
|
|
return (u > -ROUNDING_ERROR_f32) && (v >= 0) && (u + v < 1+ROUNDING_ERROR_f32);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//! Get an intersection with a 3d line.
|
|
|
|
/** \param line Line to intersect with.
|
|
|
|
\param outIntersection Place to store the intersection point, if there is one.
|
|
|
|
\return True if there was an intersection, false if not. */
|
|
|
|
bool getIntersectionWithLimitedLine(const line3d<T>& line,
|
|
|
|
vector3d<T>& outIntersection) const
|
|
|
|
{
|
|
|
|
return getIntersectionWithLine(line.start,
|
|
|
|
line.getVector(), outIntersection) &&
|
|
|
|
outIntersection.isBetweenPoints(line.start, line.end);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//! Get an intersection with a 3d line.
|
|
|
|
/** Please note that also points are returned as intersection which
|
|
|
|
are on the line, but not between the start and end point of the line.
|
|
|
|
If you want the returned point be between start and end
|
|
|
|
use getIntersectionWithLimitedLine().
|
|
|
|
\param linePoint Point of the line to intersect with.
|
|
|
|
\param lineVect Vector of the line to intersect with.
|
|
|
|
\param outIntersection Place to store the intersection point, if there is one.
|
|
|
|
\return True if there was an intersection, false if there was not. */
|
|
|
|
bool getIntersectionWithLine(const vector3d<T>& linePoint,
|
|
|
|
const vector3d<T>& lineVect, vector3d<T>& outIntersection) const
|
|
|
|
{
|
|
|
|
if (getIntersectionOfPlaneWithLine(linePoint, lineVect, outIntersection))
|
|
|
|
return isPointInside(outIntersection);
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//! Calculates the intersection between a 3d line and the plane the triangle is on.
|
|
|
|
/** \param lineVect Vector of the line to intersect with.
|
|
|
|
\param linePoint Point of the line to intersect with.
|
|
|
|
\param outIntersection Place to store the intersection point, if there is one.
|
|
|
|
\return True if there was an intersection, else false. */
|
|
|
|
bool getIntersectionOfPlaneWithLine(const vector3d<T>& linePoint,
|
|
|
|
const vector3d<T>& lineVect, vector3d<T>& outIntersection) const
|
|
|
|
{
|
|
|
|
// Work with f64 to get more precise results (makes enough difference to be worth the casts).
|
|
|
|
const vector3d<f64> linePointf64(linePoint.X, linePoint.Y, linePoint.Z);
|
|
|
|
const vector3d<f64> lineVectf64(lineVect.X, lineVect.Y, lineVect.Z);
|
|
|
|
vector3d<f64> outIntersectionf64;
|
|
|
|
|
|
|
|
core::triangle3d<irr::f64> trianglef64(vector3d<f64>((f64)pointA.X, (f64)pointA.Y, (f64)pointA.Z)
|
|
|
|
,vector3d<f64>((f64)pointB.X, (f64)pointB.Y, (f64)pointB.Z)
|
|
|
|
, vector3d<f64>((f64)pointC.X, (f64)pointC.Y, (f64)pointC.Z));
|
|
|
|
const vector3d<irr::f64> normalf64 = trianglef64.getNormal().normalize();
|
|
|
|
f64 t2;
|
|
|
|
|
|
|
|
if ( core::iszero ( t2 = normalf64.dotProduct(lineVectf64) ) )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
f64 d = trianglef64.pointA.dotProduct(normalf64);
|
|
|
|
f64 t = -(normalf64.dotProduct(linePointf64) - d) / t2;
|
|
|
|
outIntersectionf64 = linePointf64 + (lineVectf64 * t);
|
|
|
|
|
|
|
|
outIntersection.X = (T)outIntersectionf64.X;
|
|
|
|
outIntersection.Y = (T)outIntersectionf64.Y;
|
|
|
|
outIntersection.Z = (T)outIntersectionf64.Z;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//! Get the normal of the triangle.
|
|
|
|
/** Please note: The normal is not always normalized. */
|
|
|
|
vector3d<T> getNormal() const
|
|
|
|
{
|
|
|
|
return (pointB - pointA).crossProduct(pointC - pointA);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Test if the triangle would be front or backfacing from any point.
|
|
|
|
/** Thus, this method assumes a camera position from which the
|
|
|
|
triangle is definitely visible when looking at the given direction.
|
|
|
|
Do not use this method with points as it will give wrong results!
|
|
|
|
\param lookDirection Look direction.
|
|
|
|
\return True if the plane is front facing and false if it is backfacing. */
|
|
|
|
bool isFrontFacing(const vector3d<T>& lookDirection) const
|
|
|
|
{
|
|
|
|
const vector3d<T> n = getNormal().normalize();
|
|
|
|
const f32 d = (f32)n.dotProduct(lookDirection);
|
|
|
|
return F32_LOWER_EQUAL_0(d);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Get the plane of this triangle.
|
|
|
|
plane3d<T> getPlane() const
|
|
|
|
{
|
|
|
|
return plane3d<T>(pointA, pointB, pointC);
|
|
|
|
}
|
|
|
|
|
|
|
|
//! Get the area of the triangle
|
|
|
|
T getArea() const
|
|
|
|
{
|
|
|
|
return (pointB - pointA).crossProduct(pointC - pointA).getLength() * 0.5f;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
//! sets the triangle's points
|
|
|
|
void set(const core::vector3d<T>& a, const core::vector3d<T>& b, const core::vector3d<T>& c)
|
|
|
|
{
|
|
|
|
pointA = a;
|
|
|
|
pointB = b;
|
|
|
|
pointC = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
//! the three points of the triangle
|
|
|
|
vector3d<T> pointA;
|
|
|
|
vector3d<T> pointB;
|
|
|
|
vector3d<T> pointC;
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Using f64 instead of <T> to avoid integer overflows when T=int (maybe also less floating point troubles).
|
|
|
|
bool isOnSameSide(const vector3d<f64>& p1, const vector3d<f64>& p2,
|
|
|
|
const vector3d<f64>& a, const vector3d<f64>& b) const
|
|
|
|
{
|
|
|
|
vector3d<f64> bminusa = b - a;
|
|
|
|
vector3d<f64> cp1 = bminusa.crossProduct(p1 - a);
|
|
|
|
vector3d<f64> cp2 = bminusa.crossProduct(p2 - a);
|
|
|
|
f64 res = cp1.dotProduct(cp2);
|
|
|
|
if ( res < 0 )
|
|
|
|
{
|
|
|
|
// This catches some floating point troubles.
|
|
|
|
// Unfortunately slightly expensive and we don't really know the best epsilon for iszero.
|
|
|
|
vector3d<f64> cp1n = bminusa.normalize().crossProduct((p1 - a).normalize());
|
|
|
|
if (core::iszero(cp1n.X, (f64)ROUNDING_ERROR_f32)
|
|
|
|
&& core::iszero(cp1n.Y, (f64)ROUNDING_ERROR_f32)
|
|
|
|
&& core::iszero(cp1n.Z, (f64)ROUNDING_ERROR_f32) )
|
|
|
|
{
|
|
|
|
res = 0.f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (res >= 0.0f);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
//! Typedef for a f32 3d triangle.
|
|
|
|
typedef triangle3d<f32> triangle3df;
|
|
|
|
|
|
|
|
//! Typedef for an integer 3d triangle.
|
|
|
|
typedef triangle3d<s32> triangle3di;
|
|
|
|
|
|
|
|
} // end namespace core
|
|
|
|
} // end namespace irr
|
|
|
|
|
|
|
|
|