mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-26 09:40:21 +01:00
359 lines
13 KiB
C++
359 lines
13 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_LINE_2D_H_INCLUDED__
|
|
#define __IRR_LINE_2D_H_INCLUDED__
|
|
|
|
#include "irrTypes.h"
|
|
#include "vector2d.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! 2D line between two points with intersection methods.
|
|
template <class T>
|
|
class line2d
|
|
{
|
|
public:
|
|
//! Default constructor for line going from (0,0) to (1,1).
|
|
line2d() : start(0,0), end(1,1) {}
|
|
//! Constructor for line between the two points.
|
|
line2d(T xa, T ya, T xb, T yb) : start(xa, ya), end(xb, yb) {}
|
|
//! Constructor for line between the two points given as vectors.
|
|
line2d(const vector2d<T>& start, const vector2d<T>& end) : start(start), end(end) {}
|
|
|
|
// operators
|
|
|
|
line2d<T> operator+(const vector2d<T>& point) const { return line2d<T>(start + point, end + point); }
|
|
line2d<T>& operator+=(const vector2d<T>& point) { start += point; end += point; return *this; }
|
|
|
|
line2d<T> operator-(const vector2d<T>& point) const { return line2d<T>(start - point, end - point); }
|
|
line2d<T>& operator-=(const vector2d<T>& point) { start -= point; end -= point; return *this; }
|
|
|
|
bool operator==(const line2d<T>& other) const
|
|
{ return (start==other.start && end==other.end) || (end==other.start && start==other.end);}
|
|
bool operator!=(const line2d<T>& other) const
|
|
{ return !(start==other.start && end==other.end) || (end==other.start && start==other.end);}
|
|
|
|
// functions
|
|
//! Set this line to new line going through the two points.
|
|
void setLine(const T& xa, const T& ya, const T& xb, const T& yb){start.set(xa, ya); end.set(xb, yb);}
|
|
//! Set this line to new line going through the two points.
|
|
void setLine(const vector2d<T>& nstart, const vector2d<T>& nend){start.set(nstart); end.set(nend);}
|
|
//! Set this line to new line given as parameter.
|
|
void setLine(const line2d<T>& line){start.set(line.start); end.set(line.end);}
|
|
|
|
//! Get length of line
|
|
/** \return Length of the line. */
|
|
T getLength() const { return start.getDistanceFrom(end); }
|
|
|
|
//! Get squared length of the line
|
|
/** \return Squared length of line. */
|
|
T getLengthSQ() const { return start.getDistanceFromSQ(end); }
|
|
|
|
//! Get middle of the line
|
|
/** \return center of the line. */
|
|
vector2d<T> getMiddle() const
|
|
{
|
|
return (start + end)/(T)2;
|
|
}
|
|
|
|
//! Get the vector of the line.
|
|
/** \return The vector of the line. */
|
|
vector2d<T> getVector() const { return vector2d<T>( end.X - start.X, end.Y - start.Y); }
|
|
|
|
/*! Check if this segment intersects another segment,
|
|
or if segments are coincindent (colinear). */
|
|
bool intersectAsSegments( const line2d<T>& other) const
|
|
{
|
|
// Taken from:
|
|
// http://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/
|
|
|
|
// Find the four orientations needed for general and
|
|
// special cases
|
|
s32 o1 = start.checkOrientation( end, other.start);
|
|
s32 o2 = start.checkOrientation( end, other.end);
|
|
s32 o3 = other.start.checkOrientation( other.end, start);
|
|
s32 o4 = other.start.checkOrientation( other.end, end);
|
|
|
|
// General case
|
|
if (o1 != o2 && o3 != o4)
|
|
return true;
|
|
|
|
// Special Cases to check if segments are coolinear
|
|
if (o1 == 0 && other.start.isBetweenPoints( start, end)) return true;
|
|
if (o2 == 0 && other.end.isBetweenPoints( start, end)) return true;
|
|
if (o3 == 0 && start.isBetweenPoints( other.start, other.end)) return true;
|
|
if (o4 == 0 && end.isBetweenPoints( other.start, other.end)) return true;
|
|
|
|
return false; // Doesn't fall in any of the above cases
|
|
}
|
|
|
|
/*! Check if 2 segments are incident (intersects in exactly 1 point).*/
|
|
bool incidentSegments( const line2d<T>& other) const
|
|
{
|
|
return
|
|
start.checkOrientation( end, other.start) != start.checkOrientation( end, other.end)
|
|
&& other.start.checkOrientation( other.end, start) != other.start.checkOrientation( other.end, end);
|
|
}
|
|
|
|
/*! Check if 2 lines/segments are parallel or nearly parallel.*/
|
|
bool nearlyParallel( const line2d<T>& line, const T factor = relativeErrorFactor<T>()) const
|
|
{
|
|
const vector2d<T> a = getVector();
|
|
const vector2d<T> b = line.getVector();
|
|
|
|
return a.nearlyParallel( b, factor);
|
|
}
|
|
|
|
/*! returns a intersection point of 2 lines (if lines are not parallel). Behaviour
|
|
undefined if lines are parallel or coincident.
|
|
It's on optimized intersectWith with checkOnlySegments=false and ignoreCoincidentLines=true
|
|
*/
|
|
vector2d<T> fastLinesIntersection( const line2d<T>& l) const
|
|
{
|
|
const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
|
|
(l.end.X - l.start.X)*(end.Y - start.Y));
|
|
|
|
if ( commonDenominator != 0.f )
|
|
{
|
|
const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
|
|
(l.end.Y - l.start.Y)*(start.X - l.start.X));
|
|
|
|
const f32 uA = numeratorA / commonDenominator;
|
|
|
|
// Calculate the intersection point.
|
|
return vector2d<T> (
|
|
(T)(start.X + uA * (end.X - start.X)),
|
|
(T)(start.Y + uA * (end.Y - start.Y))
|
|
);
|
|
}
|
|
else
|
|
return l.start;
|
|
}
|
|
|
|
/*! Check if this line intersect a segment. The eventual intersection point is returned in "out".*/
|
|
bool lineIntersectSegment( const line2d<T>& segment, vector2d<T> & out) const
|
|
{
|
|
if (nearlyParallel( segment))
|
|
return false;
|
|
|
|
out = fastLinesIntersection( segment);
|
|
|
|
return out.isBetweenPoints( segment.start, segment.end);
|
|
}
|
|
|
|
//! Tests if this line intersects with another line.
|
|
/** \param l: Other line to test intersection with.
|
|
\param checkOnlySegments: Default is to check intersection between the begin and endpoints.
|
|
When set to false the function will check for the first intersection point when extending the lines.
|
|
\param out: If there is an intersection, the location of the
|
|
intersection will be stored in this vector.
|
|
\param ignoreCoincidentLines: When true coincident lines (lines above each other) are never considered as intersecting.
|
|
When false the center of the overlapping part is returned.
|
|
\return True if there is an intersection, false if not. */
|
|
bool intersectWith(const line2d<T>& l, vector2d<T>& out, bool checkOnlySegments=true, bool ignoreCoincidentLines=false) const
|
|
{
|
|
// Uses the method given at:
|
|
// http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
|
|
const f32 commonDenominator = (f32)((l.end.Y - l.start.Y)*(end.X - start.X) -
|
|
(l.end.X - l.start.X)*(end.Y - start.Y));
|
|
|
|
const f32 numeratorA = (f32)((l.end.X - l.start.X)*(start.Y - l.start.Y) -
|
|
(l.end.Y - l.start.Y)*(start.X -l.start.X));
|
|
|
|
const f32 numeratorB = (f32)((end.X - start.X)*(start.Y - l.start.Y) -
|
|
(end.Y - start.Y)*(start.X -l.start.X));
|
|
|
|
if(equals(commonDenominator, 0.f))
|
|
{
|
|
// The lines are either coincident or parallel
|
|
// if both numerators are 0, the lines are coincident
|
|
if(!ignoreCoincidentLines && equals(numeratorA, 0.f) && equals(numeratorB, 0.f))
|
|
{
|
|
// Try and find a common endpoint
|
|
if(l.start == start || l.end == start)
|
|
out = start;
|
|
else if(l.end == end || l.start == end)
|
|
out = end;
|
|
// now check if the two segments are disjunct
|
|
else if (l.start.X>start.X && l.end.X>start.X && l.start.X>end.X && l.end.X>end.X)
|
|
return false;
|
|
else if (l.start.Y>start.Y && l.end.Y>start.Y && l.start.Y>end.Y && l.end.Y>end.Y)
|
|
return false;
|
|
else if (l.start.X<start.X && l.end.X<start.X && l.start.X<end.X && l.end.X<end.X)
|
|
return false;
|
|
else if (l.start.Y<start.Y && l.end.Y<start.Y && l.start.Y<end.Y && l.end.Y<end.Y)
|
|
return false;
|
|
// else the lines are overlapping to some extent
|
|
else
|
|
{
|
|
// find the points which are not contributing to the
|
|
// common part
|
|
vector2d<T> maxp;
|
|
vector2d<T> minp;
|
|
if ((start.X>l.start.X && start.X>l.end.X && start.X>end.X) || (start.Y>l.start.Y && start.Y>l.end.Y && start.Y>end.Y))
|
|
maxp=start;
|
|
else if ((end.X>l.start.X && end.X>l.end.X && end.X>start.X) || (end.Y>l.start.Y && end.Y>l.end.Y && end.Y>start.Y))
|
|
maxp=end;
|
|
else if ((l.start.X>start.X && l.start.X>l.end.X && l.start.X>end.X) || (l.start.Y>start.Y && l.start.Y>l.end.Y && l.start.Y>end.Y))
|
|
maxp=l.start;
|
|
else
|
|
maxp=l.end;
|
|
if (maxp != start && ((start.X<l.start.X && start.X<l.end.X && start.X<end.X) || (start.Y<l.start.Y && start.Y<l.end.Y && start.Y<end.Y)))
|
|
minp=start;
|
|
else if (maxp != end && ((end.X<l.start.X && end.X<l.end.X && end.X<start.X) || (end.Y<l.start.Y && end.Y<l.end.Y && end.Y<start.Y)))
|
|
minp=end;
|
|
else if (maxp != l.start && ((l.start.X<start.X && l.start.X<l.end.X && l.start.X<end.X) || (l.start.Y<start.Y && l.start.Y<l.end.Y && l.start.Y<end.Y)))
|
|
minp=l.start;
|
|
else
|
|
minp=l.end;
|
|
|
|
// one line is contained in the other. Pick the center
|
|
// of the remaining points, which overlap for sure
|
|
out = core::vector2d<T>();
|
|
if (start != maxp && start != minp)
|
|
out += start;
|
|
if (end != maxp && end != minp)
|
|
out += end;
|
|
if (l.start != maxp && l.start != minp)
|
|
out += l.start;
|
|
if (l.end != maxp && l.end != minp)
|
|
out += l.end;
|
|
out.X = (T)(out.X/2);
|
|
out.Y = (T)(out.Y/2);
|
|
}
|
|
|
|
return true; // coincident
|
|
}
|
|
|
|
return false; // parallel
|
|
}
|
|
|
|
// Get the point of intersection on this line, checking that
|
|
// it is within the line segment.
|
|
const f32 uA = numeratorA / commonDenominator;
|
|
if (checkOnlySegments)
|
|
{
|
|
if(uA < 0.f || uA > 1.f)
|
|
return false; // Outside the line segment
|
|
|
|
const f32 uB = numeratorB / commonDenominator;
|
|
if(uB < 0.f || uB > 1.f)
|
|
return false; // Outside the line segment
|
|
}
|
|
|
|
// Calculate the intersection point.
|
|
out.X = (T)(start.X + uA * (end.X - start.X));
|
|
out.Y = (T)(start.Y + uA * (end.Y - start.Y));
|
|
return true;
|
|
}
|
|
|
|
//! Get unit vector of the line.
|
|
/** \return Unit vector of this line. */
|
|
vector2d<T> getUnitVector() const
|
|
{
|
|
T len = (T)(1.0 / getLength());
|
|
return vector2d<T>((end.X - start.X) * len, (end.Y - start.Y) * len);
|
|
}
|
|
|
|
//! Get angle between this line and given line.
|
|
/** \param l Other line for test.
|
|
\return Angle in degrees. */
|
|
f64 getAngleWith(const line2d<T>& l) const
|
|
{
|
|
vector2d<T> vect = getVector();
|
|
vector2d<T> vect2 = l.getVector();
|
|
return vect.getAngleWith(vect2);
|
|
}
|
|
|
|
//! Tells us if the given point lies to the left, right, or on the line.
|
|
/** \return 0 if the point is on the line
|
|
<0 if to the left, or >0 if to the right. */
|
|
T getPointOrientation(const vector2d<T>& point) const
|
|
{
|
|
return ( (end.X - start.X) * (point.Y - start.Y) -
|
|
(point.X - start.X) * (end.Y - start.Y) );
|
|
}
|
|
|
|
//! Check if the given point is a member of the line
|
|
/** \return True if point is between start and end, else false. */
|
|
bool isPointOnLine(const vector2d<T>& point) const
|
|
{
|
|
T d = getPointOrientation(point);
|
|
return (d == 0 && point.isBetweenPoints(start, end));
|
|
}
|
|
|
|
//! Check if the given point is between start and end of the line.
|
|
/** Assumes that the point is already somewhere on the line. */
|
|
bool isPointBetweenStartAndEnd(const vector2d<T>& point) const
|
|
{
|
|
return point.isBetweenPoints(start, end);
|
|
}
|
|
|
|
//! Get the closest point on this line to a point
|
|
/** \param checkOnlySegments: Default (true) is to return a point on the line-segment (between begin and end) of the line.
|
|
When set to false the function will check for the first the closest point on the the line even when outside the segment. */
|
|
vector2d<T> getClosestPoint(const vector2d<T>& point, bool checkOnlySegments=true) const
|
|
{
|
|
vector2d<f64> c((f64)(point.X-start.X), (f64)(point.Y- start.Y));
|
|
vector2d<f64> v((f64)(end.X-start.X), (f64)(end.Y-start.Y));
|
|
f64 d = v.getLength();
|
|
if ( d == 0 ) // can't tell much when the line is just a single point
|
|
return start;
|
|
v /= d;
|
|
f64 t = v.dotProduct(c);
|
|
|
|
if ( checkOnlySegments )
|
|
{
|
|
if (t < 0) return vector2d<T>((T)start.X, (T)start.Y);
|
|
if (t > d) return vector2d<T>((T)end.X, (T)end.Y);
|
|
}
|
|
|
|
v *= t;
|
|
return vector2d<T>((T)(start.X + v.X), (T)(start.Y + v.Y));
|
|
}
|
|
|
|
//! Start point of the line.
|
|
vector2d<T> start;
|
|
//! End point of the line.
|
|
vector2d<T> end;
|
|
};
|
|
|
|
// partial specialization to optimize <f32> lines (avoiding casts)
|
|
template <>
|
|
inline vector2df line2d<irr::f32>::getClosestPoint(const vector2df& point, bool checkOnlySegments) const
|
|
{
|
|
const vector2df c = point - start;
|
|
vector2df v = end - start;
|
|
const f32 d = (f32)v.getLength();
|
|
if ( d == 0 ) // can't tell much when the line is just a single point
|
|
return start;
|
|
v /= d;
|
|
const f32 t = v.dotProduct(c);
|
|
|
|
if ( checkOnlySegments )
|
|
{
|
|
if (t < 0) return start;
|
|
if (t > d) return end;
|
|
}
|
|
|
|
v *= t;
|
|
return start + v;
|
|
}
|
|
|
|
|
|
//! Typedef for an f32 line.
|
|
typedef line2d<f32> line2df;
|
|
//! Typedef for an integer line.
|
|
typedef line2d<s32> line2di;
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|