mirror of
https://github.com/minetest/irrlicht.git
synced 2025-01-12 19:00:31 +01:00
419 lines
14 KiB
C++
419 lines
14 KiB
C++
// Copyright (C) 2002-2012 Nikolaus Gebhardt
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_POINT_2D_H_INCLUDED__
|
|
#define __IRR_POINT_2D_H_INCLUDED__
|
|
|
|
#include "irrMath.h"
|
|
#include "dimension2d.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
|
|
//! 2d vector template class with lots of operators and methods.
|
|
/** As of Irrlicht 1.6, this class supersedes position2d, which should
|
|
be considered deprecated. */
|
|
template <class T>
|
|
class vector2d
|
|
{
|
|
public:
|
|
//! Default constructor (null vector)
|
|
vector2d() : X(0), Y(0) {}
|
|
//! Constructor with two different values
|
|
vector2d(T nx, T ny) : X(nx), Y(ny) {}
|
|
//! Constructor with the same value for both members
|
|
explicit vector2d(T n) : X(n), Y(n) {}
|
|
|
|
vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
|
|
|
|
// operators
|
|
|
|
vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
|
|
|
|
vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
|
|
|
|
vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
|
|
vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
|
|
vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
|
|
vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
|
|
vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
|
|
vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this; }
|
|
|
|
vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
|
|
vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
|
|
vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
|
|
vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
|
|
vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
|
|
vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this; }
|
|
|
|
vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
|
|
vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
|
|
vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
|
|
vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
|
|
|
|
vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
|
|
vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
|
|
vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
|
|
vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
|
|
|
|
T& operator [](u32 index)
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(index>1) // access violation
|
|
|
|
return *(&X+index);
|
|
}
|
|
|
|
const T& operator [](u32 index) const
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(index>1) // access violation
|
|
|
|
return *(&X+index);
|
|
}
|
|
|
|
//! sort in order X, Y. Equality with rounding tolerance.
|
|
bool operator<=(const vector2d<T>&other) const
|
|
{
|
|
return (X<other.X || core::equals(X, other.X)) ||
|
|
(core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y)));
|
|
}
|
|
|
|
//! sort in order X, Y. Equality with rounding tolerance.
|
|
bool operator>=(const vector2d<T>&other) const
|
|
{
|
|
return (X>other.X || core::equals(X, other.X)) ||
|
|
(core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y)));
|
|
}
|
|
|
|
//! sort in order X, Y. Difference must be above rounding tolerance.
|
|
bool operator<(const vector2d<T>&other) const
|
|
{
|
|
return (X<other.X && !core::equals(X, other.X)) ||
|
|
(core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y));
|
|
}
|
|
|
|
//! sort in order X, Y. Difference must be above rounding tolerance.
|
|
bool operator>(const vector2d<T>&other) const
|
|
{
|
|
return (X>other.X && !core::equals(X, other.X)) ||
|
|
(core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y));
|
|
}
|
|
|
|
bool operator==(const vector2d<T>& other) const { return equals(other); }
|
|
bool operator!=(const vector2d<T>& other) const { return !equals(other); }
|
|
|
|
// functions
|
|
|
|
//! Checks if this vector equals the other one.
|
|
/** Takes floating point rounding errors into account.
|
|
\param other Vector to compare with.
|
|
\param tolerance Epsilon value for both - comparing X and Y.
|
|
\return True if the two vector are (almost) equal, else false. */
|
|
bool equals(const vector2d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
|
|
{
|
|
return core::equals(X, other.X, tolerance) && core::equals(Y, other.Y, tolerance);
|
|
}
|
|
|
|
vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
|
|
vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
|
|
|
|
//! Gets the length of the vector.
|
|
/** \return The length of the vector. */
|
|
T getLength() const { return core::squareroot( X*X + Y*Y ); }
|
|
|
|
//! Get the squared length of this vector
|
|
/** This is useful because it is much faster than getLength().
|
|
\return The squared length of the vector. */
|
|
T getLengthSQ() const { return X*X + Y*Y; }
|
|
|
|
//! Get the dot product of this vector with another.
|
|
/** \param other Other vector to take dot product with.
|
|
\return The dot product of the two vectors. */
|
|
T dotProduct(const vector2d<T>& other) const
|
|
{
|
|
return X*other.X + Y*other.Y;
|
|
}
|
|
|
|
//! check if this vector is parallel to another vector
|
|
bool nearlyParallel( const vector2d<T> & other, const T factor = relativeErrorFactor<T>()) const
|
|
{
|
|
// https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
|
|
// if a || b then a.x/a.y = b.x/b.y (similiar triangles)
|
|
// if a || b then either both x are 0 or both y are 0.
|
|
|
|
return equalsRelative( X*other.Y, other.X* Y, factor)
|
|
&& // a bit counterintuitive, but makes sure that
|
|
// only y or only x are 0, and at same time deals
|
|
// with the case where one vector is zero vector.
|
|
(X*other.X + Y*other.Y) != 0;
|
|
}
|
|
|
|
//! Gets distance from another point.
|
|
/** Here, the vector is interpreted as a point in 2-dimensional space.
|
|
\param other Other vector to measure from.
|
|
\return Distance from other point. */
|
|
T getDistanceFrom(const vector2d<T>& other) const
|
|
{
|
|
return vector2d<T>(X - other.X, Y - other.Y).getLength();
|
|
}
|
|
|
|
//! Returns squared distance from another point.
|
|
/** Here, the vector is interpreted as a point in 2-dimensional space.
|
|
\param other Other vector to measure from.
|
|
\return Squared distance from other point. */
|
|
T getDistanceFromSQ(const vector2d<T>& other) const
|
|
{
|
|
return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
|
|
}
|
|
|
|
//! rotates the point anticlockwise around a center by an amount of degrees.
|
|
/** \param degrees Amount of degrees to rotate by, anticlockwise.
|
|
\param center Rotation center.
|
|
\return This vector after transformation. */
|
|
vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
|
|
{
|
|
degrees *= DEGTORAD64;
|
|
const f64 cs = cos(degrees);
|
|
const f64 sn = sin(degrees);
|
|
|
|
X -= center.X;
|
|
Y -= center.Y;
|
|
|
|
set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
|
|
|
|
X += center.X;
|
|
Y += center.Y;
|
|
return *this;
|
|
}
|
|
|
|
//! Normalize the vector.
|
|
/** The null vector is left untouched.
|
|
\return Reference to this vector, after normalization. */
|
|
vector2d<T>& normalize()
|
|
{
|
|
f32 length = (f32)(X*X + Y*Y);
|
|
if ( length == 0 )
|
|
return *this;
|
|
length = core::reciprocal_squareroot ( length );
|
|
X = (T)(X * length);
|
|
Y = (T)(Y * length);
|
|
return *this;
|
|
}
|
|
|
|
//! Calculates the angle of this vector in degrees in the trigonometric sense.
|
|
/** 0 is to the right (3 o'clock), values increase counter-clockwise.
|
|
This method has been suggested by Pr3t3nd3r.
|
|
\return Returns a value between 0 and 360. */
|
|
f64 getAngleTrig() const
|
|
{
|
|
if (Y == 0)
|
|
return X < 0 ? 180 : 0;
|
|
else
|
|
if (X == 0)
|
|
return Y < 0 ? 270 : 90;
|
|
|
|
if ( Y > 0)
|
|
if (X > 0)
|
|
return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
|
|
else
|
|
return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
|
|
else
|
|
if (X > 0)
|
|
return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
|
|
else
|
|
return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
|
|
}
|
|
|
|
//! Calculates the angle of this vector in degrees in the counter trigonometric sense.
|
|
/** 0 is to the right (3 o'clock), values increase clockwise.
|
|
\return Returns a value between 0 and 360. */
|
|
inline f64 getAngle() const
|
|
{
|
|
if (Y == 0) // corrected thanks to a suggestion by Jox
|
|
return X < 0 ? 180 : 0;
|
|
else if (X == 0)
|
|
return Y < 0 ? 90 : 270;
|
|
|
|
// don't use getLength here to avoid precision loss with s32 vectors
|
|
// avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
|
|
const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
|
|
const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
|
|
|
|
if (X>0 && Y>0)
|
|
return angle + 270;
|
|
else
|
|
if (X>0 && Y<0)
|
|
return angle + 90;
|
|
else
|
|
if (X<0 && Y<0)
|
|
return 90 - angle;
|
|
else
|
|
if (X<0 && Y>0)
|
|
return 270 - angle;
|
|
|
|
return angle;
|
|
}
|
|
|
|
//! Calculates the angle between this vector and another one in degree.
|
|
/** \param b Other vector to test with.
|
|
\return Returns a value between 0 and 90. */
|
|
inline f64 getAngleWith(const vector2d<T>& b) const
|
|
{
|
|
f64 tmp = (f64)(X*b.X + Y*b.Y);
|
|
|
|
if (tmp == 0.0)
|
|
return 90.0;
|
|
|
|
tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
|
|
if (tmp < 0.0)
|
|
tmp = -tmp;
|
|
if ( tmp > 1.0 ) // avoid floating-point trouble
|
|
tmp = 1.0;
|
|
|
|
return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
|
|
}
|
|
|
|
//! Returns if this vector interpreted as a point is on a line between two other points.
|
|
/** It is assumed that the point is on the line.
|
|
\param begin Beginning vector to compare between.
|
|
\param end Ending vector to compare between.
|
|
\return True if this vector is between begin and end, false if not. */
|
|
bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
|
|
{
|
|
// . end
|
|
// /
|
|
// /
|
|
// /
|
|
// . begin
|
|
// -
|
|
// -
|
|
// . this point (am I inside or outside)?
|
|
//
|
|
if (begin.X != end.X)
|
|
{
|
|
return ((begin.X <= X && X <= end.X) ||
|
|
(begin.X >= X && X >= end.X));
|
|
}
|
|
else
|
|
{
|
|
return ((begin.Y <= Y && Y <= end.Y) ||
|
|
(begin.Y >= Y && Y >= end.Y));
|
|
}
|
|
}
|
|
|
|
//! Creates an interpolated vector between this vector and another vector.
|
|
/** \param other The other vector to interpolate with.
|
|
\param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
|
|
Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
|
|
\return An interpolated vector. This vector is not modified. */
|
|
vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
|
|
{
|
|
const f64 inv = 1.0f - d;
|
|
return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
|
|
}
|
|
|
|
//! Creates a quadratically interpolated vector between this and two other vectors.
|
|
/** \param v2 Second vector to interpolate with.
|
|
\param v3 Third vector to interpolate with (maximum at 1.0f)
|
|
\param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
|
|
Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
|
|
\return An interpolated vector. This vector is not modified. */
|
|
vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
|
|
{
|
|
// this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
|
|
const f64 inv = 1.0f - d;
|
|
const f64 mul0 = inv * inv;
|
|
const f64 mul1 = 2.0f * d * inv;
|
|
const f64 mul2 = d * d;
|
|
|
|
return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
|
|
(T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
|
|
}
|
|
|
|
/*! Test if this point and another 2 points taken as triplet
|
|
are colinear, clockwise, anticlockwise. This can be used also
|
|
to check winding order in triangles for 2D meshes.
|
|
\return 0 if points are colinear, 1 if clockwise, 2 if anticlockwise
|
|
*/
|
|
s32 checkOrientation( const vector2d<T> & b, const vector2d<T> & c) const
|
|
{
|
|
// Example of clockwise points
|
|
//
|
|
// ^ Y
|
|
// | A
|
|
// | . .
|
|
// | . .
|
|
// | C.....B
|
|
// +---------------> X
|
|
|
|
T val = (b.Y - Y) * (c.X - b.X) -
|
|
(b.X - X) * (c.Y - b.Y);
|
|
|
|
if (val == 0) return 0; // colinear
|
|
|
|
return (val > 0) ? 1 : 2; // clock or counterclock wise
|
|
}
|
|
|
|
/*! Returns true if points (a,b,c) are clockwise on the X,Y plane*/
|
|
inline bool areClockwise( const vector2d<T> & b, const vector2d<T> & c) const
|
|
{
|
|
T val = (b.Y - Y) * (c.X - b.X) -
|
|
(b.X - X) * (c.Y - b.Y);
|
|
|
|
return val > 0;
|
|
}
|
|
|
|
/*! Returns true if points (a,b,c) are counterclockwise on the X,Y plane*/
|
|
inline bool areCounterClockwise( const vector2d<T> & b, const vector2d<T> & c) const
|
|
{
|
|
T val = (b.Y - Y) * (c.X - b.X) -
|
|
(b.X - X) * (c.Y - b.Y);
|
|
|
|
return val < 0;
|
|
}
|
|
|
|
//! Sets this vector to the linearly interpolated vector between a and b.
|
|
/** \param a first vector to interpolate with, maximum at 1.0f
|
|
\param b second vector to interpolate with, maximum at 0.0f
|
|
\param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
|
|
Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
|
|
*/
|
|
vector2d<T>& interpolate( const vector2d<T>& a, const vector2d<T>& b, f64 d)
|
|
{
|
|
X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
|
|
Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
|
|
return *this;
|
|
}
|
|
|
|
//! X coordinate of vector.
|
|
T X;
|
|
|
|
//! Y coordinate of vector.
|
|
T Y;
|
|
};
|
|
|
|
//! Typedef for f32 2d vector.
|
|
typedef vector2d<f32> vector2df;
|
|
|
|
//! Typedef for integer 2d vector.
|
|
typedef vector2d<s32> vector2di;
|
|
|
|
template<class S, class T>
|
|
vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
|
|
|
|
// These methods are declared in dimension2d, but need definitions of vector2d
|
|
template<class T>
|
|
dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
|
|
|
|
template<class T>
|
|
bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif
|
|
|