mirror of
https://github.com/minetest/irrlicht.git
synced 2024-11-14 06:20:26 +01:00
1083 lines
22 KiB
C++
1083 lines
22 KiB
C++
// Copyright (C) 2006-2012 by Kat'Oun
|
|
// This file is part of the "Irrlicht Engine".
|
|
// For conditions of distribution and use, see copyright notice in irrlicht.h
|
|
|
|
#ifndef __IRR_MAP_H_INCLUDED__
|
|
#define __IRR_MAP_H_INCLUDED__
|
|
|
|
#include "irrTypes.h"
|
|
#include "irrMath.h"
|
|
|
|
namespace irr
|
|
{
|
|
namespace core
|
|
{
|
|
|
|
//! map template for associative arrays using a red-black tree
|
|
template <class KeyType, class ValueType>
|
|
class map
|
|
{
|
|
//! red/black tree for map
|
|
template <class KeyTypeRB, class ValueTypeRB>
|
|
class RBTree
|
|
{
|
|
public:
|
|
|
|
RBTree(const KeyTypeRB& k, const ValueTypeRB& v)
|
|
: LeftChild(0), RightChild(0), Parent(0), Key(k),
|
|
Value(v), IsRed(true) {}
|
|
|
|
void setLeftChild(RBTree* p)
|
|
{
|
|
LeftChild=p;
|
|
if (p)
|
|
p->setParent(this);
|
|
}
|
|
|
|
void setRightChild(RBTree* p)
|
|
{
|
|
RightChild=p;
|
|
if (p)
|
|
p->setParent(this);
|
|
}
|
|
|
|
void setParent(RBTree* p) { Parent=p; }
|
|
|
|
void setValue(const ValueTypeRB& v) { Value = v; }
|
|
|
|
void setRed() { IsRed = true; }
|
|
void setBlack() { IsRed = false; }
|
|
|
|
RBTree* getLeftChild() const { return LeftChild; }
|
|
RBTree* getRightChild() const { return RightChild; }
|
|
RBTree* getParent() const { return Parent; }
|
|
|
|
const ValueTypeRB& getValue() const
|
|
{
|
|
return Value;
|
|
}
|
|
|
|
ValueTypeRB& getValue()
|
|
{
|
|
return Value;
|
|
}
|
|
|
|
const KeyTypeRB& getKey() const
|
|
{
|
|
return Key;
|
|
}
|
|
|
|
bool isRoot() const
|
|
{
|
|
return Parent==0;
|
|
}
|
|
|
|
bool isLeftChild() const
|
|
{
|
|
return (Parent != 0) && (Parent->getLeftChild()==this);
|
|
}
|
|
|
|
bool isRightChild() const
|
|
{
|
|
return (Parent!=0) && (Parent->getRightChild()==this);
|
|
}
|
|
|
|
bool isLeaf() const
|
|
{
|
|
return (LeftChild==0) && (RightChild==0);
|
|
}
|
|
|
|
unsigned int getLevel() const
|
|
{
|
|
if (isRoot())
|
|
return 1;
|
|
else
|
|
return getParent()->getLevel() + 1;
|
|
}
|
|
|
|
|
|
bool isRed() const
|
|
{
|
|
return IsRed;
|
|
}
|
|
|
|
bool isBlack() const
|
|
{
|
|
return !IsRed;
|
|
}
|
|
|
|
private:
|
|
RBTree();
|
|
|
|
RBTree* LeftChild;
|
|
RBTree* RightChild;
|
|
|
|
RBTree* Parent;
|
|
|
|
KeyTypeRB Key;
|
|
ValueTypeRB Value;
|
|
|
|
bool IsRed;
|
|
}; // RBTree
|
|
|
|
public:
|
|
|
|
typedef RBTree<KeyType,ValueType> Node;
|
|
// We need the forward declaration for the friend declaration
|
|
class ConstIterator;
|
|
|
|
//! Normal Iterator
|
|
class Iterator
|
|
{
|
|
friend class ConstIterator;
|
|
public:
|
|
|
|
Iterator() : Root(0), Cur(0) {}
|
|
|
|
// Constructor(Node*)
|
|
Iterator(Node* root) : Root(root)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset(bool atLowest=true)
|
|
{
|
|
if (atLowest)
|
|
Cur = getMin(Root);
|
|
else
|
|
Cur = getMax(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode() const
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
void operator--(int)
|
|
{
|
|
dec();
|
|
}
|
|
|
|
Node* operator->()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator*()
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *Cur;
|
|
}
|
|
|
|
private:
|
|
|
|
Node* getMin(Node* n) const
|
|
{
|
|
while(n && n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
return n;
|
|
}
|
|
|
|
Node* getMax(Node* n) const
|
|
{
|
|
while(n && n->getRightChild())
|
|
n = n->getRightChild();
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getRightChild())
|
|
{
|
|
// If current node has a right child, the next higher node is the
|
|
// node with lowest key beneath the right child.
|
|
Cur = getMin(Cur->getRightChild());
|
|
}
|
|
else if (Cur->isLeftChild())
|
|
{
|
|
// No right child? Well if current node is a left child then
|
|
// the next higher node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is left child nor has a right child.
|
|
// I.e. it is either right child or root
|
|
// The next higher node is the parent of the first non-right
|
|
// child (i.e. either a left child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
while(Cur->isRightChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
void dec()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getLeftChild())
|
|
{
|
|
// If current node has a left child, the next lower node is the
|
|
// node with highest key beneath the left child.
|
|
Cur = getMax(Cur->getLeftChild());
|
|
}
|
|
else if (Cur->isRightChild())
|
|
{
|
|
// No left child? Well if current node is a right child then
|
|
// the next lower node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is right child nor has a left child.
|
|
// It is either left child or root
|
|
// The next higher node is the parent of the first non-left
|
|
// child (i.e. either a right child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
|
|
while(Cur->isLeftChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
}; // Iterator
|
|
|
|
//! Const Iterator
|
|
class ConstIterator
|
|
{
|
|
friend class Iterator;
|
|
public:
|
|
|
|
ConstIterator() : Root(0), Cur(0) {}
|
|
|
|
// Constructor(Node*)
|
|
ConstIterator(const Node* root) : Root(root)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Constructor(Iterator)
|
|
ConstIterator(const Iterator& src) : Root(src.Root), Cur(src.Cur) {}
|
|
|
|
void reset(bool atLowest=true)
|
|
{
|
|
if (atLowest)
|
|
Cur = getMin(Root);
|
|
else
|
|
Cur = getMax(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
const Node* getNode() const
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
void operator--(int)
|
|
{
|
|
dec();
|
|
}
|
|
|
|
const Node* operator->()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
const Node& operator*()
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *Cur;
|
|
}
|
|
|
|
private:
|
|
|
|
const Node* getMin(const Node* n) const
|
|
{
|
|
while(n && n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
return n;
|
|
}
|
|
|
|
const Node* getMax(const Node* n) const
|
|
{
|
|
while(n && n->getRightChild())
|
|
n = n->getRightChild();
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getRightChild())
|
|
{
|
|
// If current node has a right child, the next higher node is the
|
|
// node with lowest key beneath the right child.
|
|
Cur = getMin(Cur->getRightChild());
|
|
}
|
|
else if (Cur->isLeftChild())
|
|
{
|
|
// No right child? Well if current node is a left child then
|
|
// the next higher node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is left child nor has a right child.
|
|
// It is either right child or root
|
|
// The next higher node is the parent of the first non-right
|
|
// child (i.e. either a left child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
while(Cur->isRightChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
void dec()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
if (Cur->getLeftChild())
|
|
{
|
|
// If current node has a left child, the next lower node is the
|
|
// node with highest key beneath the left child.
|
|
Cur = getMax(Cur->getLeftChild());
|
|
}
|
|
else if (Cur->isRightChild())
|
|
{
|
|
// No left child? Well if current node is a right child then
|
|
// the next lower node is the parent
|
|
Cur = Cur->getParent();
|
|
}
|
|
else
|
|
{
|
|
// Current node neither is right child nor has a left child.
|
|
// It is either left child or root
|
|
// The next higher node is the parent of the first non-left
|
|
// child (i.e. either a right child or the root) up in the
|
|
// hierarchy. Root's parent is 0.
|
|
|
|
while(Cur->isLeftChild())
|
|
Cur = Cur->getParent();
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
|
|
const Node* Root;
|
|
const Node* Cur;
|
|
}; // ConstIterator
|
|
|
|
|
|
//! Parent First Iterator.
|
|
/** Traverses the tree from top to bottom. Typical usage is
|
|
when storing the tree structure, because when reading it
|
|
later (and inserting elements) the tree structure will
|
|
be the same. */
|
|
class ParentFirstIterator
|
|
{
|
|
public:
|
|
|
|
ParentFirstIterator() : Root(0), Cur(0) {}
|
|
|
|
explicit ParentFirstIterator(Node* root) : Root(root), Cur(0)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
Cur = Root;
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode()
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
Node* operator -> ()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator* ()
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *getNode();
|
|
}
|
|
|
|
private:
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
// First we try down to the left
|
|
if (Cur->getLeftChild())
|
|
{
|
|
Cur = Cur->getLeftChild();
|
|
}
|
|
else if (Cur->getRightChild())
|
|
{
|
|
// No left child? The we go down to the right.
|
|
Cur = Cur->getRightChild();
|
|
}
|
|
else
|
|
{
|
|
// No children? Move up in the hierarchy until
|
|
// we either reach 0 (and are finished) or
|
|
// find a right uncle.
|
|
while (Cur!=0)
|
|
{
|
|
// But if parent is left child and has a right "uncle" the parent
|
|
// has already been processed but the uncle hasn't. Move to
|
|
// the uncle.
|
|
if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
|
|
{
|
|
Cur = Cur->getParent()->getRightChild();
|
|
return;
|
|
}
|
|
Cur = Cur->getParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
|
|
}; // ParentFirstIterator
|
|
|
|
|
|
//! Parent Last Iterator
|
|
/** Traverse the tree from bottom to top.
|
|
Typical usage is when deleting all elements in the tree
|
|
because you must delete the children before you delete
|
|
their parent. */
|
|
class ParentLastIterator
|
|
{
|
|
public:
|
|
|
|
ParentLastIterator() : Root(0), Cur(0) {}
|
|
|
|
explicit ParentLastIterator(Node* root) : Root(root), Cur(0)
|
|
{
|
|
reset();
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
Cur = getMin(Root);
|
|
}
|
|
|
|
bool atEnd() const
|
|
{
|
|
return Cur==0;
|
|
}
|
|
|
|
Node* getNode()
|
|
{
|
|
return Cur;
|
|
}
|
|
|
|
void operator++(int)
|
|
{
|
|
inc();
|
|
}
|
|
|
|
Node* operator -> ()
|
|
{
|
|
return getNode();
|
|
}
|
|
|
|
Node& operator* ()
|
|
{
|
|
_IRR_DEBUG_BREAK_IF(atEnd()) // access violation
|
|
|
|
return *getNode();
|
|
}
|
|
private:
|
|
|
|
Node* getMin(Node* n)
|
|
{
|
|
while(n!=0 && (n->getLeftChild()!=0 || n->getRightChild()!=0))
|
|
{
|
|
if (n->getLeftChild())
|
|
n = n->getLeftChild();
|
|
else
|
|
n = n->getRightChild();
|
|
}
|
|
return n;
|
|
}
|
|
|
|
void inc()
|
|
{
|
|
// Already at end?
|
|
if (Cur==0)
|
|
return;
|
|
|
|
// Note: Starting point is the node as far down to the left as possible.
|
|
|
|
// If current node has an uncle to the right, go to the
|
|
// node as far down to the left from the uncle as possible
|
|
// else just go up a level to the parent.
|
|
if (Cur->isLeftChild() && Cur->getParent()->getRightChild())
|
|
{
|
|
Cur = getMin(Cur->getParent()->getRightChild());
|
|
}
|
|
else
|
|
Cur = Cur->getParent();
|
|
}
|
|
|
|
Node* Root;
|
|
Node* Cur;
|
|
}; // ParentLastIterator
|
|
|
|
|
|
// AccessClass is a temporary class used with the [] operator.
|
|
// It makes it possible to have different behavior in situations like:
|
|
// myTree["Foo"] = 32;
|
|
// If "Foo" already exists update its value else insert a new element.
|
|
// int i = myTree["Foo"]
|
|
// If "Foo" exists return its value.
|
|
class AccessClass
|
|
{
|
|
// Let map be the only one who can instantiate this class.
|
|
friend class map<KeyType, ValueType>;
|
|
|
|
public:
|
|
|
|
// Assignment operator. Handles the myTree["Foo"] = 32; situation
|
|
void operator=(const ValueType& value)
|
|
{
|
|
// Just use the Set method, it handles already exist/not exist situation
|
|
Tree.set(Key,value);
|
|
}
|
|
|
|
// ValueType operator
|
|
operator ValueType()
|
|
{
|
|
Node* node = Tree.find(Key);
|
|
|
|
// Not found
|
|
_IRR_DEBUG_BREAK_IF(node==0) // access violation
|
|
|
|
return node->getValue();
|
|
}
|
|
|
|
private:
|
|
|
|
AccessClass(map& tree, const KeyType& key) : Tree(tree), Key(key) {}
|
|
|
|
AccessClass();
|
|
|
|
map& Tree;
|
|
const KeyType& Key;
|
|
}; // AccessClass
|
|
|
|
|
|
// Constructor.
|
|
map() : Root(0), Size(0) {}
|
|
|
|
// Destructor
|
|
~map()
|
|
{
|
|
clear();
|
|
}
|
|
|
|
// typedefs
|
|
typedef KeyType key_type;
|
|
typedef ValueType value_type;
|
|
typedef u32 size_type;
|
|
|
|
//------------------------------
|
|
// Public Commands
|
|
//------------------------------
|
|
|
|
//! Inserts a new node into the tree
|
|
/** \param keyNew: the index for this value
|
|
\param v: the value to insert
|
|
\return True if successful, false if it fails (already exists) */
|
|
bool insert(const KeyType& keyNew, const ValueType& v)
|
|
{
|
|
// First insert node the "usual" way (no fancy balance logic yet)
|
|
Node* newNode = new Node(keyNew,v);
|
|
if (!insert(newNode))
|
|
{
|
|
delete newNode;
|
|
return false;
|
|
}
|
|
|
|
// Then attend a balancing party
|
|
while (!newNode->isRoot() && (newNode->getParent()->isRed()))
|
|
{
|
|
if (newNode->getParent()->isLeftChild())
|
|
{
|
|
// If newNode is a left child, get its right 'uncle'
|
|
Node* newNodesUncle = newNode->getParent()->getParent()->getRightChild();
|
|
if ( newNodesUncle!=0 && newNodesUncle->isRed())
|
|
{
|
|
// case 1 - change the colors
|
|
newNode->getParent()->setBlack();
|
|
newNodesUncle->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
// Move newNode up the tree
|
|
newNode = newNode->getParent()->getParent();
|
|
}
|
|
else
|
|
{
|
|
// newNodesUncle is a black node
|
|
if ( newNode->isRightChild())
|
|
{
|
|
// and newNode is to the right
|
|
// case 2 - move newNode up and rotate
|
|
newNode = newNode->getParent();
|
|
rotateLeft(newNode);
|
|
}
|
|
// case 3
|
|
newNode->getParent()->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
rotateRight(newNode->getParent()->getParent());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// If newNode is a right child, get its left 'uncle'
|
|
Node* newNodesUncle = newNode->getParent()->getParent()->getLeftChild();
|
|
if ( newNodesUncle!=0 && newNodesUncle->isRed())
|
|
{
|
|
// case 1 - change the colors
|
|
newNode->getParent()->setBlack();
|
|
newNodesUncle->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
// Move newNode up the tree
|
|
newNode = newNode->getParent()->getParent();
|
|
}
|
|
else
|
|
{
|
|
// newNodesUncle is a black node
|
|
if (newNode->isLeftChild())
|
|
{
|
|
// and newNode is to the left
|
|
// case 2 - move newNode up and rotate
|
|
newNode = newNode->getParent();
|
|
rotateRight(newNode);
|
|
}
|
|
// case 3
|
|
newNode->getParent()->setBlack();
|
|
newNode->getParent()->getParent()->setRed();
|
|
rotateLeft(newNode->getParent()->getParent());
|
|
}
|
|
|
|
}
|
|
}
|
|
// Color the root black
|
|
Root->setBlack();
|
|
return true;
|
|
}
|
|
|
|
//! Replaces the value if the key already exists, otherwise inserts a new element.
|
|
/** \param k The index for this value
|
|
\param v The new value of */
|
|
void set(const KeyType& k, const ValueType& v)
|
|
{
|
|
Node* p = find(k);
|
|
if (p)
|
|
p->setValue(v);
|
|
else
|
|
insert(k,v);
|
|
}
|
|
|
|
//! Removes a node from the tree and returns it.
|
|
/** The returned node must be deleted by the user
|
|
\param k the key to remove
|
|
\return A pointer to the node, or 0 if not found */
|
|
Node* delink(const KeyType& k)
|
|
{
|
|
Node* p = find(k);
|
|
if (p == 0)
|
|
return 0;
|
|
|
|
// Rotate p down to the left until it has no right child, will get there
|
|
// sooner or later.
|
|
while(p->getRightChild())
|
|
{
|
|
// "Pull up my right child and let it knock me down to the left"
|
|
rotateLeft(p);
|
|
}
|
|
// p now has no right child but might have a left child
|
|
Node* left = p->getLeftChild();
|
|
|
|
// Let p's parent point to p's child instead of point to p
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
|
|
else
|
|
{
|
|
// p has no parent => p is the root.
|
|
// Let the left child be the new root.
|
|
setRoot(left);
|
|
}
|
|
|
|
// p is now gone from the tree in the sense that
|
|
// no one is pointing at it, so return it.
|
|
|
|
--Size;
|
|
return p;
|
|
}
|
|
|
|
//! Removes a node from the tree and deletes it.
|
|
/** \return True if the node was found and deleted */
|
|
bool remove(const KeyType& k)
|
|
{
|
|
Node* p = find(k);
|
|
return remove(p);
|
|
}
|
|
|
|
//! Removes a node from the tree and deletes it.
|
|
/** \return True if the node was found and deleted */
|
|
bool remove(Node* p)
|
|
{
|
|
if (p == 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Rotate p down to the left until it has no right child, will get there
|
|
// sooner or later.
|
|
while(p->getRightChild())
|
|
{
|
|
// "Pull up my right child and let it knock me down to the left"
|
|
rotateLeft(p);
|
|
}
|
|
// p now has no right child but might have a left child
|
|
Node* left = p->getLeftChild();
|
|
|
|
// Let p's parent point to p's child instead of point to p
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
|
|
else
|
|
{
|
|
// p has no parent => p is the root.
|
|
// Let the left child be the new root.
|
|
setRoot(left);
|
|
}
|
|
|
|
// p is now gone from the tree in the sense that
|
|
// no one is pointing at it. Let's get rid of it.
|
|
delete p;
|
|
|
|
--Size;
|
|
return true;
|
|
}
|
|
|
|
//! Clear the entire tree
|
|
void clear()
|
|
{
|
|
ParentLastIterator i(getParentLastIterator());
|
|
|
|
while(!i.atEnd())
|
|
{
|
|
Node* p = i.getNode();
|
|
i++; // Increment it before it is deleted
|
|
// else iterator will get quite confused.
|
|
delete p;
|
|
}
|
|
Root = 0;
|
|
Size= 0;
|
|
}
|
|
|
|
//! Is the tree empty?
|
|
//! \return Returns true if empty, false if not
|
|
bool empty() const
|
|
{
|
|
return Root == 0;
|
|
}
|
|
|
|
//! \deprecated Use empty() instead. This method may be removed by Irrlicht 1.9
|
|
_IRR_DEPRECATED_ bool isEmpty() const
|
|
{
|
|
return empty();
|
|
}
|
|
|
|
//! Search for a node with the specified key.
|
|
//! \param keyToFind: The key to find
|
|
//! \return Returns 0 if node couldn't be found.
|
|
Node* find(const KeyType& keyToFind) const
|
|
{
|
|
Node* pNode = Root;
|
|
|
|
while(pNode!=0)
|
|
{
|
|
const KeyType& key=pNode->getKey();
|
|
|
|
if (keyToFind == key)
|
|
return pNode;
|
|
else if (keyToFind < key)
|
|
pNode = pNode->getLeftChild();
|
|
else //keyToFind > key
|
|
pNode = pNode->getRightChild();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//! Gets the root element.
|
|
//! \return Returns a pointer to the root node, or
|
|
//! 0 if the tree is empty.
|
|
Node* getRoot() const
|
|
{
|
|
return Root;
|
|
}
|
|
|
|
//! Returns the number of nodes in the tree.
|
|
u32 size() const
|
|
{
|
|
return Size;
|
|
}
|
|
|
|
//! Swap the content of this map container with the content of another map
|
|
/** Afterwards this object will contain the content of the other object and the other
|
|
object will contain the content of this object. Iterators will afterwards be valid for
|
|
the swapped object.
|
|
\param other Swap content with this object */
|
|
void swap(map<KeyType, ValueType>& other)
|
|
{
|
|
core::swap(Root, other.Root);
|
|
core::swap(Size, other.Size);
|
|
}
|
|
|
|
//------------------------------
|
|
// Public Iterators
|
|
//------------------------------
|
|
|
|
//! Returns an iterator
|
|
Iterator getIterator() const
|
|
{
|
|
Iterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a Constiterator
|
|
ConstIterator getConstIterator() const
|
|
{
|
|
Iterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a ParentFirstIterator.
|
|
//! Traverses the tree from top to bottom. Typical usage is
|
|
//! when storing the tree structure, because when reading it
|
|
//! later (and inserting elements) the tree structure will
|
|
//! be the same.
|
|
ParentFirstIterator getParentFirstIterator() const
|
|
{
|
|
ParentFirstIterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//! Returns a ParentLastIterator to traverse the tree from
|
|
//! bottom to top.
|
|
//! Typical usage is when deleting all elements in the tree
|
|
//! because you must delete the children before you delete
|
|
//! their parent.
|
|
ParentLastIterator getParentLastIterator() const
|
|
{
|
|
ParentLastIterator it(getRoot());
|
|
return it;
|
|
}
|
|
|
|
//------------------------------
|
|
// Public Operators
|
|
//------------------------------
|
|
|
|
//! operator [] for access to elements
|
|
/** for example myMap["key"] */
|
|
AccessClass operator[](const KeyType& k)
|
|
{
|
|
return AccessClass(*this, k);
|
|
}
|
|
private:
|
|
|
|
//------------------------------
|
|
// Disabled methods
|
|
//------------------------------
|
|
// Copy constructor and assignment operator deliberately
|
|
// defined but not implemented. The tree should never be
|
|
// copied, pass along references to it instead.
|
|
explicit map(const map& src);
|
|
map& operator = (const map& src);
|
|
|
|
//! Set node as new root.
|
|
/** The node will be set to black, otherwise core dumps may arise
|
|
(patch provided by rogerborg).
|
|
\param newRoot Node which will be the new root
|
|
*/
|
|
void setRoot(Node* newRoot)
|
|
{
|
|
Root = newRoot;
|
|
if (Root != 0)
|
|
{
|
|
Root->setParent(0);
|
|
Root->setBlack();
|
|
}
|
|
}
|
|
|
|
//! Insert a node into the tree without using any fancy balancing logic.
|
|
/** \return false if that key already exist in the tree. */
|
|
bool insert(Node* newNode)
|
|
{
|
|
bool result=true; // Assume success
|
|
|
|
if (Root==0)
|
|
{
|
|
setRoot(newNode);
|
|
Size = 1;
|
|
}
|
|
else
|
|
{
|
|
Node* pNode = Root;
|
|
const KeyType& keyNew = newNode->getKey();
|
|
while (pNode)
|
|
{
|
|
const KeyType& key=pNode->getKey();
|
|
|
|
if (keyNew == key)
|
|
{
|
|
result = false;
|
|
pNode = 0;
|
|
}
|
|
else if (keyNew < key)
|
|
{
|
|
if (pNode->getLeftChild() == 0)
|
|
{
|
|
pNode->setLeftChild(newNode);
|
|
pNode = 0;
|
|
}
|
|
else
|
|
pNode = pNode->getLeftChild();
|
|
}
|
|
else // keyNew > key
|
|
{
|
|
if (pNode->getRightChild()==0)
|
|
{
|
|
pNode->setRightChild(newNode);
|
|
pNode = 0;
|
|
}
|
|
else
|
|
{
|
|
pNode = pNode->getRightChild();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (result)
|
|
++Size;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//! Rotate left.
|
|
//! Pull up node's right child and let it knock node down to the left
|
|
void rotateLeft(Node* p)
|
|
{
|
|
Node* right = p->getRightChild();
|
|
|
|
p->setRightChild(right->getLeftChild());
|
|
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(right);
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(right);
|
|
else
|
|
setRoot(right);
|
|
|
|
right->setLeftChild(p);
|
|
}
|
|
|
|
//! Rotate right.
|
|
//! Pull up node's left child and let it knock node down to the right
|
|
void rotateRight(Node* p)
|
|
{
|
|
Node* left = p->getLeftChild();
|
|
|
|
p->setLeftChild(left->getRightChild());
|
|
|
|
if (p->isLeftChild())
|
|
p->getParent()->setLeftChild(left);
|
|
else if (p->isRightChild())
|
|
p->getParent()->setRightChild(left);
|
|
else
|
|
setRoot(left);
|
|
|
|
left->setRightChild(p);
|
|
}
|
|
|
|
//------------------------------
|
|
// Private Members
|
|
//------------------------------
|
|
Node* Root; // The top node. 0 if empty.
|
|
u32 Size; // Number of nodes in the tree
|
|
};
|
|
|
|
} // end namespace core
|
|
} // end namespace irr
|
|
|
|
#endif // __IRR_MAP_H_INCLUDED__
|
|
|