Make volumetric light effect strength server controllable

- Make volumetric light effect strength server controllable
- Separate volumetric and bloom shader pipeline
- Require bloom to be enable, scale godrays with bloom
This commit is contained in:
Lars 2023-10-23 17:05:31 -07:00 committed by lhofhansl
parent 04f0d545da
commit e0d4a9d575
16 changed files with 227 additions and 144 deletions

View File

@ -627,6 +627,10 @@ bloom_strength_factor (Bloom Strength Factor) float 1.0 0.1 10.0
# Requires: shaders, enable_bloom
bloom_radius (Bloom Radius) float 1 0.1 8
# Set to true to enable volumetric lighting effect (a.k.a. "Godrays").
#
# Requires: shaders, enable_bloom
enable_volumetric_lighting (Volumetric lighting) bool false
[*Audio]

View File

@ -1,28 +1,13 @@
#define rendered texture0
#define depthmap texture2
struct ExposureParams {
float compensationFactor;
};
uniform sampler2D rendered;
uniform sampler2D depthmap;
uniform mediump float bloomStrength;
uniform ExposureParams exposureParams;
uniform vec3 sunPositionScreen;
uniform float sunBrightness;
uniform vec3 moonPositionScreen;
uniform float moonBrightness;
uniform vec3 dayLight;
#ifdef ENABLE_DYNAMIC_SHADOWS
uniform vec3 v_LightDirection;
#else
const vec3 v_LightDirection = vec3(0.0, -1.0, 0.0);
#endif
#ifdef GL_ES
varying mediump vec2 varTexCoord;
#else
@ -33,80 +18,6 @@ centroid varying vec2 varTexCoord;
varying float exposure; // linear exposure factor, see vertex shader
#endif
const float far = 1000.;
const float near = 1.;
float mapDepth(float depth)
{
return min(1., 1. / (1.00001 - depth) / far);
}
float noise(vec3 uvd) {
return fract(dot(sin(uvd * vec3(13041.19699, 27723.29171, 61029.77801)), vec3(73137.11101, 37312.92319, 10108.89991)));
}
float sampleVolumetricLight(vec2 uv, vec3 lightVec, float rawDepth)
{
lightVec = 0.5 * lightVec / lightVec.z + 0.5;
const float samples = 30.;
float result = texture2D(depthmap, uv).r < 1. ? 0.0 : 1.0;
float bias = noise(vec3(uv, rawDepth));
vec2 samplepos;
for (float i = 1.; i < samples; i++) {
samplepos = mix(uv, lightVec.xy, (i + bias) / samples);
if (min(samplepos.x, samplepos.y) > 0. && max(samplepos.x, samplepos.y) < 1.)
result += texture2D(depthmap, samplepos).r < 1. ? 0.0 : 1.0;
}
return result / samples;
}
vec3 getDirectLightScatteringAtGround(vec3 v_LightDirection)
{
// Based on talk at 2002 Game Developers Conference by Naty Hoffman and Arcot J. Preetham
const float beta_r0 = 1e-5; // Rayleigh scattering beta
// These factors are calculated based on expected value of scattering factor of 1e-5
// for Nitrogen at 532nm (green), 2e25 molecules/m3 in atmosphere
const vec3 beta_r0_l = vec3(3.3362176e-01, 8.75378289198826e-01, 1.95342379700656) * beta_r0; // wavelength-dependent scattering
const float atmosphere_height = 15000.; // height of the atmosphere in meters
// sun/moon light at the ground level, after going through the atmosphere
return exp(-beta_r0_l * atmosphere_height / (1e-5 - dot(v_LightDirection, vec3(0., 1., 0.))));
}
vec3 applyVolumetricLight(vec3 color, vec2 uv, float rawDepth)
{
vec3 lookDirection = normalize(vec3(uv.x * 2. - 1., uv.y * 2. - 1., rawDepth));
vec3 lightSourceTint = vec3(1.0, 0.98, 0.4);
const float boost = 4.0;
float brightness = 0.;
vec3 sourcePosition = vec3(-1., -1., -1);
if (sunPositionScreen.z > 0. && sunBrightness > 0.) {
brightness = sunBrightness;
sourcePosition = sunPositionScreen;
}
else if (moonPositionScreen.z > 0. && moonBrightness > 0.) {
lightSourceTint = vec3(0.4, 0.9, 1.);
brightness = moonBrightness * 0.05;
sourcePosition = moonPositionScreen;
}
float cameraDirectionFactor = pow(clamp(dot(sourcePosition, vec3(0., 0., 1.)), 0.0, 0.7), 2.5);
float viewAngleFactor = pow(max(0., dot(sourcePosition, lookDirection)), 8.);
float lightFactor = brightness * sampleVolumetricLight(uv, sourcePosition, rawDepth) *
(0.05 * cameraDirectionFactor + 0.95 * viewAngleFactor);
color = mix(color, boost * getDirectLightScatteringAtGround(v_LightDirection) * dayLight, lightFactor);
// if (sunPositionScreen.z < 0.)
// color.rg += 1. - clamp(abs((2. * uv.xy - 1.) - sunPositionScreen.xy / sunPositionScreen.z) * 1000., 0., 1.);
// if (moonPositionScreen.z < 0.)
// color.rg += 1. - clamp(abs((2. * uv.xy - 1.) - moonPositionScreen.xy / moonPositionScreen.z) * 1000., 0., 1.);
return color;
}
void main(void)
{
vec2 uv = varTexCoord.st;
@ -120,9 +31,5 @@ void main(void)
color *= exposure;
#endif
float rawDepth = texture2D(depthmap, uv).r;
color = applyVolumetricLight(color, uv, rawDepth);
gl_FragColor = vec4(color, 1.0); // force full alpha to avoid holes in the image.
}

View File

@ -126,7 +126,6 @@ void main(void)
#endif
}
#ifdef ENABLE_BLOOM
color = applyBloom(color, uv);
#endif

View File

@ -0,0 +1,115 @@
#define rendered texture0
#define depthmap texture1
uniform sampler2D rendered;
uniform sampler2D depthmap;
uniform vec3 sunPositionScreen;
uniform float sunBrightness;
uniform vec3 moonPositionScreen;
uniform float moonBrightness;
uniform lowp float volumetricLightStrength;
uniform vec3 dayLight;
#ifdef ENABLE_DYNAMIC_SHADOWS
uniform vec3 v_LightDirection;
#else
const vec3 v_LightDirection = vec3(0.0, -1.0, 0.0);
#endif
#ifdef GL_ES
varying mediump vec2 varTexCoord;
#else
centroid varying vec2 varTexCoord;
#endif
const float far = 1000.;
float mapDepth(float depth)
{
return min(1., 1. / (1.00001 - depth) / far);
}
float noise(vec3 uvd) {
return fract(dot(sin(uvd * vec3(13041.19699, 27723.29171, 61029.77801)), vec3(73137.11101, 37312.92319, 10108.89991)));
}
float sampleVolumetricLight(vec2 uv, vec3 lightVec, float rawDepth)
{
lightVec = 0.5 * lightVec / lightVec.z + 0.5;
const float samples = 30.;
float result = texture2D(depthmap, uv).r < 1. ? 0.0 : 1.0;
float bias = noise(vec3(uv, rawDepth));
vec2 samplepos;
for (float i = 1.; i < samples; i++) {
samplepos = mix(uv, lightVec.xy, (i + bias) / samples);
if (min(samplepos.x, samplepos.y) > 0. && max(samplepos.x, samplepos.y) < 1.)
result += texture2D(depthmap, samplepos).r < 1. ? 0.0 : 1.0;
}
return result / samples;
}
vec3 getDirectLightScatteringAtGround(vec3 v_LightDirection)
{
// Based on talk at 2002 Game Developers Conference by Naty Hoffman and Arcot J. Preetham
const float beta_r0 = 1e-5; // Rayleigh scattering beta
// These factors are calculated based on expected value of scattering factor of 1e-5
// for Nitrogen at 532nm (green), 2e25 molecules/m3 in atmosphere
const vec3 beta_r0_l = vec3(3.3362176e-01, 8.75378289198826e-01, 1.95342379700656) * beta_r0; // wavelength-dependent scattering
const float atmosphere_height = 15000.; // height of the atmosphere in meters
// sun/moon light at the ground level, after going through the atmosphere
return exp(-beta_r0_l * atmosphere_height / (1e-5 - dot(v_LightDirection, vec3(0., 1., 0.))));
}
vec3 applyVolumetricLight(vec3 color, vec2 uv, float rawDepth)
{
vec3 lookDirection = normalize(vec3(uv.x * 2. - 1., uv.y * 2. - 1., rawDepth));
const float boost = 4.0;
float brightness = 0.;
vec3 sourcePosition = vec3(-1., -1., -1);
if (sunPositionScreen.z > 0. && sunBrightness > 0.) {
brightness = sunBrightness;
sourcePosition = sunPositionScreen;
}
else if (moonPositionScreen.z > 0. && moonBrightness > 0.) {
brightness = moonBrightness * 0.05;
sourcePosition = moonPositionScreen;
}
float cameraDirectionFactor = pow(clamp(dot(sourcePosition, vec3(0., 0., 1.)), 0.0, 0.7), 2.5);
float viewAngleFactor = pow(max(0., dot(sourcePosition, lookDirection)), 8.);
float lightFactor = brightness * sampleVolumetricLight(uv, sourcePosition, rawDepth) *
(0.05 * cameraDirectionFactor + 0.95 * viewAngleFactor);
color = mix(color, boost * getDirectLightScatteringAtGround(v_LightDirection) * dayLight, lightFactor);
// a factor of 5 tested well
color *= volumetricLightStrength * 5.0;
// if (sunPositionScreen.z < 0.)
// color.rg += 1. - clamp(abs((2. * uv.xy - 1.) - sunPositionScreen.xy / sunPositionScreen.z) * 1000., 0., 1.);
// if (moonPositionScreen.z < 0.)
// color.rg += 1. - clamp(abs((2. * uv.xy - 1.) - moonPositionScreen.xy / moonPositionScreen.z) * 1000., 0., 1.);
return color;
}
void main(void)
{
vec2 uv = varTexCoord.st;
vec3 color = texture2D(rendered, uv).rgb;
// translate to linear colorspace (approximate)
color = pow(color, vec3(2.2));
if (volumetricLightStrength > 0.0) {
float rawDepth = texture2D(depthmap, uv).r;
color = applyVolumetricLight(color, uv, rawDepth);
}
gl_FragColor = vec4(color, 1.0); // force full alpha to avoid holes in the image.
}

View File

@ -0,0 +1,12 @@
#ifdef GL_ES
varying mediump vec2 varTexCoord;
#else
centroid varying vec2 varTexCoord;
#endif
void main(void)
{
varTexCoord.st = inTexCoord0.st;
gl_Position = inVertexPosition;
}

View File

@ -8036,6 +8036,9 @@ child will follow movement and rotation of that bone.
* `speed_dark_bright` set the speed of adapting to bright light (default: `1000.0`)
* `speed_bright_dark` set the speed of adapting to dark scene (default: `1000.0`)
* `center_weight_power` set the power factor for center-weighted luminance measurement (default: `1.0`)
* `volumetric_light`: is a table that controls volumetric light (a.k.a. "godrays")
* `strength`: sets the strength of the volumetric light effect from 0 (off, default) to 1 (strongest)
* This value has no effect on clients who have the "Volumetric Lighting" or "Bloom" shaders disabled.
* `get_lighting()`: returns the current state of lighting for the player.
* Result is a table with the same fields as `light_definition` in `set_lighting`.

View File

@ -404,10 +404,12 @@ class GameGlobalShaderConstantSetter : public IShaderConstantSetter
CachedPixelShaderSetting<float> m_bloom_radius_pixel;
float m_bloom_radius;
CachedPixelShaderSetting<float> m_saturation_pixel;
bool m_volumetric_light_enabled;
CachedPixelShaderSetting<float, 3> m_sun_position_pixel;
CachedPixelShaderSetting<float> m_sun_brightness_pixel;
CachedPixelShaderSetting<float, 3> m_moon_position_pixel;
CachedPixelShaderSetting<float> m_moon_brightness_pixel;
CachedPixelShaderSetting<float> m_volumetric_light_strength_pixel;
public:
void onSettingsChange(const std::string &name)
@ -469,7 +471,8 @@ public:
m_sun_position_pixel("sunPositionScreen"),
m_sun_brightness_pixel("sunBrightness"),
m_moon_position_pixel("moonPositionScreen"),
m_moon_brightness_pixel("moonBrightness")
m_moon_brightness_pixel("moonBrightness"),
m_volumetric_light_strength_pixel("volumetricLightStrength")
{
g_settings->registerChangedCallback("enable_fog", settingsCallback, this);
g_settings->registerChangedCallback("exposure_compensation", settingsCallback, this);
@ -483,6 +486,7 @@ public:
m_bloom_intensity = g_settings->getFloat("bloom_intensity", 0.01f, 1.0f);
m_bloom_strength = RenderingEngine::BASE_BLOOM_STRENGTH * g_settings->getFloat("bloom_strength_factor", 0.1f, 10.0f);
m_bloom_radius = g_settings->getFloat("bloom_radius", 0.1f, 8.0f);
m_volumetric_light_enabled = g_settings->getBool("enable_volumetric_lighting") && m_bloom_enabled;
}
~GameGlobalShaderConstantSetter()
@ -588,49 +592,52 @@ public:
float saturation = m_client->getEnv().getLocalPlayer()->getLighting().saturation;
m_saturation_pixel.set(&saturation, services);
// Map directional light to screen space
auto camera_node = m_client->getCamera()->getCameraNode();
core::matrix4 transform = camera_node->getProjectionMatrix();
transform *= camera_node->getViewMatrix();
if (m_volumetric_light_enabled) {
// Map directional light to screen space
auto camera_node = m_client->getCamera()->getCameraNode();
core::matrix4 transform = camera_node->getProjectionMatrix();
transform *= camera_node->getViewMatrix();
if (m_sky->getSunVisible()) {
v3f sun_position = camera_node->getAbsolutePosition() +
10000. * m_sky->getSunDirection();
transform.transformVect(sun_position);
sun_position.normalize();
if (m_sky->getSunVisible()) {
v3f sun_position = camera_node->getAbsolutePosition() +
10000. * m_sky->getSunDirection();
transform.transformVect(sun_position);
sun_position.normalize();
float sun_position_array[3] = { sun_position.X, sun_position.Y, sun_position.Z};
m_sun_position_pixel.set(sun_position_array, services);
float sun_position_array[3] = { sun_position.X, sun_position.Y, sun_position.Z};
m_sun_position_pixel.set(sun_position_array, services);
float sun_brightness = rangelim(107.143f * m_sky->getSunDirection().dotProduct(v3f(0.f, 1.f, 0.f)), 0.f, 1.f);
m_sun_brightness_pixel.set(&sun_brightness, services);
}
else {
float sun_position_array[3] = { 0.f, 0.f, -1.f };
m_sun_position_pixel.set(sun_position_array, services);
float sun_brightness = rangelim(107.143f * m_sky->getSunDirection().dotProduct(v3f(0.f, 1.f, 0.f)), 0.f, 1.f);
m_sun_brightness_pixel.set(&sun_brightness, services);
} else {
float sun_position_array[3] = { 0.f, 0.f, -1.f };
m_sun_position_pixel.set(sun_position_array, services);
float sun_brightness = 0.f;
m_sun_brightness_pixel.set(&sun_brightness, services);
}
float sun_brightness = 0.f;
m_sun_brightness_pixel.set(&sun_brightness, services);
}
if (m_sky->getMoonVisible()) {
v3f moon_position = camera_node->getAbsolutePosition() +
10000. * m_sky->getMoonDirection();
transform.transformVect(moon_position);
moon_position.normalize();
if (m_sky->getMoonVisible()) {
v3f moon_position = camera_node->getAbsolutePosition() +
10000. * m_sky->getMoonDirection();
transform.transformVect(moon_position);
moon_position.normalize();
float moon_position_array[3] = { moon_position.X, moon_position.Y, moon_position.Z};
m_moon_position_pixel.set(moon_position_array, services);
float moon_position_array[3] = { moon_position.X, moon_position.Y, moon_position.Z};
m_moon_position_pixel.set(moon_position_array, services);
float moon_brightness = rangelim(107.143f * m_sky->getMoonDirection().dotProduct(v3f(0.f, 1.f, 0.f)), 0.f, 1.f);
m_moon_brightness_pixel.set(&moon_brightness, services);
}
else {
float moon_position_array[3] = { 0.f, 0.f, -1.f };
m_moon_position_pixel.set(moon_position_array, services);
float moon_brightness = rangelim(107.143f * m_sky->getMoonDirection().dotProduct(v3f(0.f, 1.f, 0.f)), 0.f, 1.f);
m_moon_brightness_pixel.set(&moon_brightness, services);
}
else {
float moon_position_array[3] = { 0.f, 0.f, -1.f };
m_moon_position_pixel.set(moon_position_array, services);
float moon_brightness = 0.f;
m_moon_brightness_pixel.set(&moon_brightness, services);
float moon_brightness = 0.f;
m_moon_brightness_pixel.set(&moon_brightness, services);
}
float volumetric_light_strength = m_client->getEnv().getLocalPlayer()->getLighting().volumetric_light_strength;
m_volumetric_light_strength_pixel.set(&volumetric_light_strength, services);
}
}
@ -3089,7 +3096,6 @@ void Game::handleClientEvent_SetSky(ClientEvent *event, CameraOrientation *cam)
else
sky->setFogStart(rangelim(g_settings->getFloat("fog_start"), 0.0f, 0.99f));
delete event->set_sky;
}

View File

@ -120,8 +120,9 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
static const u8 TEXTURE_EXPOSURE_1 = 3;
static const u8 TEXTURE_EXPOSURE_2 = 4;
static const u8 TEXTURE_FXAA = 5;
static const u8 TEXTURE_BLOOM_DOWN = 10;
static const u8 TEXTURE_BLOOM_UP = 20;
static const u8 TEXTURE_VOLUME = 6;
static const u8 TEXTURE_SCALE_DOWN = 10;
static const u8 TEXTURE_SCALE_UP = 20;
// Super-sampling is simply rendering into a larger texture.
// Downscaling is done by the final step when rendering to the screen.
@ -130,6 +131,7 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
const bool enable_auto_exposure = g_settings->getBool("enable_auto_exposure");
const bool enable_ssaa = antialiasing == "ssaa";
const bool enable_fxaa = antialiasing == "fxaa";
const bool enable_volumetric_light = g_settings->getBool("enable_volumetric_lighting") && enable_bloom;
if (enable_ssaa) {
u16 ssaa_scale = MYMAX(2, g_settings->getU16("fsaa"));
@ -160,9 +162,9 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
v2f downscale = scale * 0.5;
for (u8 i = 0; i < MIPMAP_LEVELS; i++) {
buffer->setTexture(TEXTURE_BLOOM_DOWN + i, downscale, std::string("downsample") + std::to_string(i), color_format);
buffer->setTexture(TEXTURE_SCALE_DOWN + i, downscale, std::string("downsample") + std::to_string(i), color_format);
if (enable_bloom)
buffer->setTexture(TEXTURE_BLOOM_UP + i, downscale, std::string("upsample") + std::to_string(i), color_format);
buffer->setTexture(TEXTURE_SCALE_UP + i, downscale, std::string("upsample") + std::to_string(i), color_format);
downscale *= 0.5;
}
@ -171,20 +173,30 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
// get bright spots
u32 shader_id = client->getShaderSource()->getShader("extract_bloom", TILE_MATERIAL_PLAIN, NDT_MESH);
RenderStep *extract_bloom = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_COLOR, TEXTURE_EXPOSURE_1, TEXTURE_DEPTH });
RenderStep *extract_bloom = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { source, TEXTURE_EXPOSURE_1 });
extract_bloom->setRenderSource(buffer);
extract_bloom->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_BLOOM));
source = TEXTURE_BLOOM;
}
if (enable_volumetric_light) {
buffer->setTexture(TEXTURE_VOLUME, scale, "volume", color_format);
shader_id = client->getShaderSource()->getShader("volumetric_light", TILE_MATERIAL_PLAIN, NDT_MESH);
auto volume = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { source, TEXTURE_DEPTH });
volume->setRenderSource(buffer);
volume->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_VOLUME));
source = TEXTURE_VOLUME;
}
// downsample
shader_id = client->getShaderSource()->getShader("bloom_downsample", TILE_MATERIAL_PLAIN, NDT_MESH);
for (u8 i = 0; i < MIPMAP_LEVELS; i++) {
auto step = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { source });
step->setRenderSource(buffer);
step->setBilinearFilter(0, true);
step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_BLOOM_DOWN + i));
source = TEXTURE_BLOOM_DOWN + i;
step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_SCALE_DOWN + i));
source = TEXTURE_SCALE_DOWN + i;
}
}
@ -193,19 +205,19 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
// upsample
shader_id = client->getShaderSource()->getShader("bloom_upsample", TILE_MATERIAL_PLAIN, NDT_MESH);
for (u8 i = MIPMAP_LEVELS - 1; i > 0; i--) {
auto step = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { u8(TEXTURE_BLOOM_DOWN + i - 1), source });
auto step = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { u8(TEXTURE_SCALE_DOWN + i - 1), source });
step->setRenderSource(buffer);
step->setBilinearFilter(0, true);
step->setBilinearFilter(1, true);
step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, u8(TEXTURE_BLOOM_UP + i - 1)));
source = TEXTURE_BLOOM_UP + i - 1;
step->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, u8(TEXTURE_SCALE_UP + i - 1)));
source = TEXTURE_SCALE_UP + i - 1;
}
}
// Dynamic Exposure pt2
if (enable_auto_exposure) {
shader_id = client->getShaderSource()->getShader("update_exposure", TILE_MATERIAL_PLAIN, NDT_MESH);
auto update_exposure = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_EXPOSURE_1, u8(TEXTURE_BLOOM_DOWN + MIPMAP_LEVELS - 1) });
auto update_exposure = pipeline->addStep<PostProcessingStep>(shader_id, std::vector<u8> { TEXTURE_EXPOSURE_1, u8(TEXTURE_SCALE_DOWN + MIPMAP_LEVELS - 1) });
update_exposure->setBilinearFilter(1, true);
update_exposure->setRenderSource(buffer);
update_exposure->setRenderTarget(pipeline->createOwned<TextureBufferOutput>(buffer, TEXTURE_EXPOSURE_2));
@ -228,7 +240,7 @@ RenderStep *addPostProcessing(RenderPipeline *pipeline, RenderStep *previousStep
// final merge
shader_id = client->getShaderSource()->getShader("second_stage", TILE_MATERIAL_PLAIN, NDT_MESH);
PostProcessingStep *effect = pipeline->createOwned<PostProcessingStep>(shader_id, std::vector<u8> { final_stage_source, TEXTURE_BLOOM_UP, TEXTURE_EXPOSURE_2 });
PostProcessingStep *effect = pipeline->createOwned<PostProcessingStep>(shader_id, std::vector<u8> { final_stage_source, TEXTURE_SCALE_UP, TEXTURE_EXPOSURE_2 });
pipeline->addStep(effect);
if (enable_ssaa)
effect->setBilinearFilter(0, true);

View File

@ -770,6 +770,10 @@ ShaderInfo ShaderSource::generateShader(const std::string &name,
if (g_settings->getBool("debanding"))
shaders_header << "#define ENABLE_DITHERING 1\n";
if (g_settings->getBool("enable_volumetric_lighting")) {
shaders_header << "#define VOLUMETRIC_LIGHT 1\n";
}
shaders_header << "#line 0\n"; // reset the line counter for meaningful diagnostics
std::string common_header = shaders_header.str();

View File

@ -120,6 +120,9 @@ public:
void setFogStart(float fog_start) { m_sky_params.fog_start = fog_start; }
float getFogStart() const { return m_sky_params.fog_start; }
void setVolumetricLightStrength(float volumetric_light_strength) { m_sky_params.volumetric_light_strength = volumetric_light_strength; }
float getVolumetricLightStrength() const { return m_sky_params.volumetric_light_strength; }
private:
aabb3f m_box;
video::SMaterial m_materials[SKY_MATERIAL_COUNT];

View File

@ -271,6 +271,7 @@ void set_default_settings()
settings->setDefault("bloom_strength_factor", "1.0");
settings->setDefault("bloom_intensity", "0.05");
settings->setDefault("bloom_radius", "1");
settings->setDefault("enable_volumetric_lighting", "false");
// Effects Shadows
settings->setDefault("enable_dynamic_shadows", "false");

View File

@ -53,4 +53,5 @@ struct Lighting
AutoExposure exposure;
float shadow_intensity {0.0f};
float saturation {1.0f};
float volumetric_light_strength {0.0f};
};

View File

@ -1804,4 +1804,6 @@ void Client::handleCommand_SetLighting(NetworkPacket *pkt)
>> lighting.exposure.speed_bright_dark
>> lighting.exposure.center_weight_power;
}
if (pkt->getRemainingBytes() >= 4)
*pkt >> lighting.volumetric_light_strength;
}

View File

@ -2495,7 +2495,14 @@ int ObjectRef::l_set_lighting(lua_State *L)
lighting.exposure.center_weight_power = getfloatfield_default(L, -1, "center_weight_power", lighting.exposure.center_weight_power);
}
lua_pop(L, 1); // exposure
}
lua_getfield(L, 2, "volumetric_light");
if (lua_istable(L, -1)) {
getfloatfield(L, -1, "strength", lighting.volumetric_light_strength);
lighting.volumetric_light_strength = rangelim(lighting.volumetric_light_strength, 0.0f, 1.0f);
}
lua_pop(L, 1); // volumetric_light
}
getServer(L)->setLighting(player, lighting);
return 0;
@ -2533,6 +2540,10 @@ int ObjectRef::l_get_lighting(lua_State *L)
lua_pushnumber(L, lighting.exposure.center_weight_power);
lua_setfield(L, -2, "center_weight_power");
lua_setfield(L, -2, "exposure");
lua_newtable(L); // "volumetric_light"
lua_pushnumber(L, lighting.volumetric_light_strength);
lua_setfield(L, -2, "strength");
lua_setfield(L, -2, "volumetric_light");
return 1;
}

View File

@ -1919,6 +1919,8 @@ void Server::SendSetLighting(session_t peer_id, const Lighting &lighting)
<< lighting.exposure.speed_bright_dark
<< lighting.exposure.center_weight_power;
pkt << lighting.volumetric_light_strength;
Send(&pkt);
}

View File

@ -46,6 +46,7 @@ struct SkyboxParams
float body_orbit_tilt { INVALID_SKYBOX_TILT };
s16 fog_distance { -1 };
float fog_start { -1.0f };
float volumetric_light_strength { 0.0f };
};
struct SunParams