minetest/src/client/mapblock_mesh.cpp

1033 lines
30 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "mapblock_mesh.h"
#include "client.h"
#include "mapblock.h"
#include "map.h"
#include "noise.h"
#include "profiler.h"
#include "shader.h"
#include "mesh.h"
#include "minimap.h"
#include "content_mapblock.h"
#include "util/directiontables.h"
#include "client/meshgen/collector.h"
#include "client/renderingengine.h"
#include <array>
#include <algorithm>
#include <cmath>
/*
MeshMakeData
*/
MeshMakeData::MeshMakeData(const NodeDefManager *ndef, u16 side_length, bool use_shaders):
side_length(side_length),
nodedef(ndef),
m_use_shaders(use_shaders)
{}
void MeshMakeData::fillBlockDataBegin(const v3s16 &blockpos)
{
m_blockpos = blockpos;
v3s16 blockpos_nodes = m_blockpos*MAP_BLOCKSIZE;
m_vmanip.clear();
VoxelArea voxel_area(blockpos_nodes - v3s16(1,1,1) * MAP_BLOCKSIZE,
blockpos_nodes + v3s16(1,1,1) * (side_length + MAP_BLOCKSIZE /* extra layer of blocks around the mesh */) - v3s16(1,1,1));
m_vmanip.addArea(voxel_area);
}
void MeshMakeData::fillBlockData(const v3s16 &bp, MapNode *data)
{
v3s16 data_size(MAP_BLOCKSIZE, MAP_BLOCKSIZE, MAP_BLOCKSIZE);
VoxelArea data_area(v3s16(0,0,0), data_size - v3s16(1,1,1));
v3s16 blockpos_nodes = bp * MAP_BLOCKSIZE;
m_vmanip.copyFrom(data, data_area, v3s16(0,0,0), blockpos_nodes, data_size);
}
void MeshMakeData::setCrack(int crack_level, v3s16 crack_pos)
{
if (crack_level >= 0)
m_crack_pos_relative = crack_pos - m_blockpos*MAP_BLOCKSIZE;
}
void MeshMakeData::setSmoothLighting(bool smooth_lighting)
{
m_smooth_lighting = smooth_lighting;
}
/*
Light and vertex color functions
*/
/*
Calculate non-smooth lighting at interior of node.
Single light bank.
*/
static u8 getInteriorLight(enum LightBank bank, MapNode n, s32 increment,
const NodeDefManager *ndef)
{
u8 light = n.getLight(bank, ndef->getLightingFlags(n));
light = rangelim(light + increment, 0, LIGHT_SUN);
return decode_light(light);
}
/*
Calculate non-smooth lighting at interior of node.
Both light banks.
*/
u16 getInteriorLight(MapNode n, s32 increment, const NodeDefManager *ndef)
{
u16 day = getInteriorLight(LIGHTBANK_DAY, n, increment, ndef);
u16 night = getInteriorLight(LIGHTBANK_NIGHT, n, increment, ndef);
return day | (night << 8);
}
/*
Calculate non-smooth lighting at face of node.
Single light bank.
*/
static u8 getFaceLight(enum LightBank bank, MapNode n, MapNode n2, const NodeDefManager *ndef)
{
ContentLightingFlags f1 = ndef->getLightingFlags(n);
ContentLightingFlags f2 = ndef->getLightingFlags(n2);
u8 light;
u8 l1 = n.getLight(bank, f1);
u8 l2 = n2.getLight(bank, f2);
if(l1 > l2)
light = l1;
else
light = l2;
// Boost light level for light sources
u8 light_source = MYMAX(f1.light_source, f2.light_source);
if(light_source > light)
light = light_source;
return decode_light(light);
}
/*
Calculate non-smooth lighting at face of node.
Both light banks.
*/
u16 getFaceLight(MapNode n, MapNode n2, const NodeDefManager *ndef)
{
u16 day = getFaceLight(LIGHTBANK_DAY, n, n2, ndef);
u16 night = getFaceLight(LIGHTBANK_NIGHT, n, n2, ndef);
return day | (night << 8);
}
/*
Calculate smooth lighting at the XYZ- corner of p.
Both light banks
*/
static u16 getSmoothLightCombined(const v3s16 &p,
const std::array<v3s16,8> &dirs, MeshMakeData *data)
{
const NodeDefManager *ndef = data->nodedef;
u16 ambient_occlusion = 0;
u16 light_count = 0;
u8 light_source_max = 0;
u16 light_day = 0;
u16 light_night = 0;
bool direct_sunlight = false;
auto add_node = [&] (u8 i, bool obstructed = false) -> bool {
if (obstructed) {
ambient_occlusion++;
return false;
}
MapNode n = data->m_vmanip.getNodeNoExNoEmerge(p + dirs[i]);
if (n.getContent() == CONTENT_IGNORE)
return true;
const ContentFeatures &f = ndef->get(n);
if (f.light_source > light_source_max)
light_source_max = f.light_source;
// Check f.solidness because fast-style leaves look better this way
if (f.param_type == CPT_LIGHT && f.solidness != 2) {
u8 light_level_day = n.getLight(LIGHTBANK_DAY, f.getLightingFlags());
u8 light_level_night = n.getLight(LIGHTBANK_NIGHT, f.getLightingFlags());
if (light_level_day == LIGHT_SUN)
direct_sunlight = true;
light_day += decode_light(light_level_day);
light_night += decode_light(light_level_night);
light_count++;
} else {
ambient_occlusion++;
}
return f.light_propagates;
};
bool obstructed[4] = { true, true, true, true };
add_node(0);
bool opaque1 = !add_node(1);
bool opaque2 = !add_node(2);
bool opaque3 = !add_node(3);
obstructed[0] = opaque1 && opaque2;
obstructed[1] = opaque1 && opaque3;
obstructed[2] = opaque2 && opaque3;
for (u8 k = 0; k < 3; ++k)
if (add_node(k + 4, obstructed[k]))
obstructed[3] = false;
if (add_node(7, obstructed[3])) { // wrap light around nodes
ambient_occlusion -= 3;
for (u8 k = 0; k < 3; ++k)
add_node(k + 4, !obstructed[k]);
}
if (light_count == 0) {
light_day = light_night = 0;
} else {
light_day /= light_count;
light_night /= light_count;
}
// boost direct sunlight, if any
if (direct_sunlight)
light_day = 0xFF;
// Boost brightness around light sources
bool skip_ambient_occlusion_day = false;
if (decode_light(light_source_max) >= light_day) {
light_day = decode_light(light_source_max);
skip_ambient_occlusion_day = true;
}
bool skip_ambient_occlusion_night = false;
if(decode_light(light_source_max) >= light_night) {
light_night = decode_light(light_source_max);
skip_ambient_occlusion_night = true;
}
if (ambient_occlusion > 4) {
static thread_local const float ao_gamma = rangelim(
g_settings->getFloat("ambient_occlusion_gamma"), 0.25, 4.0);
// Table of gamma space multiply factors.
static thread_local const float light_amount[3] = {
powf(0.75, 1.0 / ao_gamma),
powf(0.5, 1.0 / ao_gamma),
powf(0.25, 1.0 / ao_gamma)
};
//calculate table index for gamma space multiplier
ambient_occlusion -= 5;
if (!skip_ambient_occlusion_day)
light_day = rangelim(core::round32(
light_day * light_amount[ambient_occlusion]), 0, 255);
if (!skip_ambient_occlusion_night)
light_night = rangelim(core::round32(
light_night * light_amount[ambient_occlusion]), 0, 255);
}
return light_day | (light_night << 8);
}
/*
Calculate smooth lighting at the given corner of p.
Both light banks.
Node at p is solid, and thus the lighting is face-dependent.
*/
u16 getSmoothLightSolid(const v3s16 &p, const v3s16 &face_dir, const v3s16 &corner, MeshMakeData *data)
{
return getSmoothLightTransparent(p + face_dir, corner - 2 * face_dir, data);
}
/*
Calculate smooth lighting at the given corner of p.
Both light banks.
Node at p is not solid, and the lighting is not face-dependent.
*/
u16 getSmoothLightTransparent(const v3s16 &p, const v3s16 &corner, MeshMakeData *data)
{
const std::array<v3s16,8> dirs = {{
// Always shine light
v3s16(0,0,0),
v3s16(corner.X,0,0),
v3s16(0,corner.Y,0),
v3s16(0,0,corner.Z),
// Can be obstructed
v3s16(corner.X,corner.Y,0),
v3s16(corner.X,0,corner.Z),
v3s16(0,corner.Y,corner.Z),
v3s16(corner.X,corner.Y,corner.Z)
}};
return getSmoothLightCombined(p, dirs, data);
}
void get_sunlight_color(video::SColorf *sunlight, u32 daynight_ratio){
f32 rg = daynight_ratio / 1000.0f - 0.04f;
f32 b = (0.98f * daynight_ratio) / 1000.0f + 0.078f;
sunlight->r = rg;
sunlight->g = rg;
sunlight->b = b;
}
void final_color_blend(video::SColor *result,
u16 light, u32 daynight_ratio)
{
video::SColorf dayLight;
get_sunlight_color(&dayLight, daynight_ratio);
final_color_blend(result,
encode_light(light, 0), dayLight);
}
void final_color_blend(video::SColor *result,
const video::SColor &data, const video::SColorf &dayLight)
{
static const video::SColorf artificialColor(1.04f, 1.04f, 1.04f);
video::SColorf c(data);
f32 n = 1 - c.a;
f32 r = c.r * (c.a * dayLight.r + n * artificialColor.r) * 2.0f;
f32 g = c.g * (c.a * dayLight.g + n * artificialColor.g) * 2.0f;
f32 b = c.b * (c.a * dayLight.b + n * artificialColor.b) * 2.0f;
// Emphase blue a bit in darker places
// Each entry of this array represents a range of 8 blue levels
static const u8 emphase_blue_when_dark[32] = {
1, 4, 6, 6, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
b += emphase_blue_when_dark[irr::core::clamp((s32) ((r + g + b) / 3 * 255),
0, 255) / 8] / 255.0f;
result->setRed(core::clamp((s32) (r * 255.0f), 0, 255));
result->setGreen(core::clamp((s32) (g * 255.0f), 0, 255));
result->setBlue(core::clamp((s32) (b * 255.0f), 0, 255));
}
/*
Mesh generation helpers
*/
// This table is moved outside getNodeVertexDirs to avoid the compiler using
// a mutex to initialize this table at runtime right in the hot path.
// For details search the internet for "cxa_guard_acquire".
static const v3s16 vertex_dirs_table[] = {
// ( 1, 0, 0)
v3s16( 1,-1, 1), v3s16( 1,-1,-1),
v3s16( 1, 1,-1), v3s16( 1, 1, 1),
// ( 0, 1, 0)
v3s16( 1, 1,-1), v3s16(-1, 1,-1),
v3s16(-1, 1, 1), v3s16( 1, 1, 1),
// ( 0, 0, 1)
v3s16(-1,-1, 1), v3s16( 1,-1, 1),
v3s16( 1, 1, 1), v3s16(-1, 1, 1),
// invalid
v3s16(), v3s16(), v3s16(), v3s16(),
// ( 0, 0,-1)
v3s16( 1,-1,-1), v3s16(-1,-1,-1),
v3s16(-1, 1,-1), v3s16( 1, 1,-1),
// ( 0,-1, 0)
v3s16( 1,-1, 1), v3s16(-1,-1, 1),
v3s16(-1,-1,-1), v3s16( 1,-1,-1),
// (-1, 0, 0)
v3s16(-1,-1,-1), v3s16(-1,-1, 1),
v3s16(-1, 1, 1), v3s16(-1, 1,-1)
};
/*
Gets nth node tile (0 <= n <= 5).
*/
void getNodeTileN(MapNode mn, const v3s16 &p, u8 tileindex, MeshMakeData *data, TileSpec &tile)
{
const NodeDefManager *ndef = data->nodedef;
const ContentFeatures &f = ndef->get(mn);
tile = f.tiles[tileindex];
bool has_crack = p == data->m_crack_pos_relative;
for (TileLayer &layer : tile.layers) {
if (layer.texture_id == 0)
continue;
if (!layer.has_color)
mn.getColor(f, &(layer.color));
// Apply temporary crack
if (has_crack)
layer.material_flags |= MATERIAL_FLAG_CRACK;
}
}
/*
Gets node tile given a face direction.
*/
void getNodeTile(MapNode mn, const v3s16 &p, const v3s16 &dir, MeshMakeData *data, TileSpec &tile)
{
const NodeDefManager *ndef = data->nodedef;
// Direction must be (1,0,0), (-1,0,0), (0,1,0), (0,-1,0),
// (0,0,1), (0,0,-1) or (0,0,0)
assert(dir.X * dir.X + dir.Y * dir.Y + dir.Z * dir.Z <= 1);
// Convert direction to single integer for table lookup
// 0 = (0,0,0)
// 1 = (1,0,0)
// 2 = (0,1,0)
// 3 = (0,0,1)
// 4 = invalid, treat as (0,0,0)
// 5 = (0,0,-1)
// 6 = (0,-1,0)
// 7 = (-1,0,0)
u8 dir_i = (dir.X + 2 * dir.Y + 3 * dir.Z) & 7;
// Get rotation for things like chests
u8 facedir = mn.getFaceDir(ndef, true);
static constexpr auto
R0 = TileRotation::None,
R1 = TileRotation::R90,
R2 = TileRotation::R180,
R3 = TileRotation::R270;
static const struct {
u8 tile;
TileRotation rotation;
} dir_to_tile[24][8] = {
// 0 +X +Y +Z -Z -Y -X -> value=tile,rotation
{{0,R0}, {2,R0}, {0,R0}, {4,R0}, {0,R0}, {5,R0}, {1,R0}, {3,R0}}, // rotate around y+ 0 - 3
{{0,R0}, {4,R0}, {0,R3}, {3,R0}, {0,R0}, {2,R0}, {1,R1}, {5,R0}},
{{0,R0}, {3,R0}, {0,R2}, {5,R0}, {0,R0}, {4,R0}, {1,R2}, {2,R0}},
{{0,R0}, {5,R0}, {0,R1}, {2,R0}, {0,R0}, {3,R0}, {1,R3}, {4,R0}},
{{0,R0}, {2,R3}, {5,R0}, {0,R2}, {0,R0}, {1,R0}, {4,R2}, {3,R1}}, // rotate around z+ 4 - 7
{{0,R0}, {4,R3}, {2,R0}, {0,R1}, {0,R0}, {1,R1}, {3,R2}, {5,R1}},
{{0,R0}, {3,R3}, {4,R0}, {0,R0}, {0,R0}, {1,R2}, {5,R2}, {2,R1}},
{{0,R0}, {5,R3}, {3,R0}, {0,R3}, {0,R0}, {1,R3}, {2,R2}, {4,R1}},
{{0,R0}, {2,R1}, {4,R2}, {1,R2}, {0,R0}, {0,R0}, {5,R0}, {3,R3}}, // rotate around z- 8 - 11
{{0,R0}, {4,R1}, {3,R2}, {1,R3}, {0,R0}, {0,R3}, {2,R0}, {5,R3}},
{{0,R0}, {3,R1}, {5,R2}, {1,R0}, {0,R0}, {0,R2}, {4,R0}, {2,R3}},
{{0,R0}, {5,R1}, {2,R2}, {1,R1}, {0,R0}, {0,R1}, {3,R0}, {4,R3}},
{{0,R0}, {0,R3}, {3,R3}, {4,R1}, {0,R0}, {5,R3}, {2,R3}, {1,R3}}, // rotate around x+ 12 - 15
{{0,R0}, {0,R2}, {5,R3}, {3,R1}, {0,R0}, {2,R3}, {4,R3}, {1,R0}},
{{0,R0}, {0,R1}, {2,R3}, {5,R1}, {0,R0}, {4,R3}, {3,R3}, {1,R1}},
{{0,R0}, {0,R0}, {4,R3}, {2,R1}, {0,R0}, {3,R3}, {5,R3}, {1,R2}},
{{0,R0}, {1,R1}, {2,R1}, {4,R3}, {0,R0}, {5,R1}, {3,R1}, {0,R1}}, // rotate around x- 16 - 19
{{0,R0}, {1,R2}, {4,R1}, {3,R3}, {0,R0}, {2,R1}, {5,R1}, {0,R0}},
{{0,R0}, {1,R3}, {3,R1}, {5,R3}, {0,R0}, {4,R1}, {2,R1}, {0,R3}},
{{0,R0}, {1,R0}, {5,R1}, {2,R3}, {0,R0}, {3,R1}, {4,R1}, {0,R2}},
{{0,R0}, {3,R2}, {1,R2}, {4,R2}, {0,R0}, {5,R2}, {0,R2}, {2,R2}}, // rotate around y- 20 - 23
{{0,R0}, {5,R2}, {1,R3}, {3,R2}, {0,R0}, {2,R2}, {0,R1}, {4,R2}},
{{0,R0}, {2,R2}, {1,R0}, {5,R2}, {0,R0}, {4,R2}, {0,R0}, {3,R2}},
{{0,R0}, {4,R2}, {1,R1}, {2,R2}, {0,R0}, {3,R2}, {0,R3}, {5,R2}}
};
getNodeTileN(mn, p, dir_to_tile[facedir][dir_i].tile, data, tile);
tile.rotation = tile.world_aligned ? TileRotation::None : dir_to_tile[facedir][dir_i].rotation;
}
static void applyTileColor(PreMeshBuffer &pmb)
{
video::SColor tc = pmb.layer.color;
if (tc == video::SColor(0xFFFFFFFF))
return;
for (video::S3DVertex &vertex : pmb.vertices) {
video::SColor *c = &vertex.Color;
c->set(c->getAlpha(),
c->getRed() * tc.getRed() / 255,
c->getGreen() * tc.getGreen() / 255,
c->getBlue() * tc.getBlue() / 255);
}
}
/*
MapBlockBspTree
*/
void MapBlockBspTree::buildTree(const std::vector<MeshTriangle> *triangles, u16 side_length)
{
this->triangles = triangles;
nodes.clear();
// assert that triangle index can fit into s32
assert(triangles->size() <= 0x7FFFFFFFL);
std::vector<s32> indexes;
indexes.reserve(triangles->size());
for (u32 i = 0; i < triangles->size(); i++)
indexes.push_back(i);
if (!indexes.empty()) {
// Start in the center of the block with increment of one quarter in each direction
root = buildTree(v3f(1, 0, 0), v3f((side_length + 1) * 0.5f * BS), side_length * 0.25f * BS, indexes, 0);
} else {
root = -1;
}
}
/**
* @brief Find a candidate plane to split a set of triangles in two
*
* The candidate plane is represented by one of the triangles from the set.
*
* @param list Vector of indexes of the triangles in the set
* @param triangles Vector of all triangles in the BSP tree
* @return Address of the triangle that represents the proposed split plane
*/
static const MeshTriangle *findSplitCandidate(const std::vector<s32> &list, const std::vector<MeshTriangle> &triangles)
{
// find the center of the cluster.
v3f center(0, 0, 0);
size_t n = list.size();
for (s32 i : list) {
center += triangles[i].centroid / n;
}
// find the triangle with the largest area and closest to the center
const MeshTriangle *candidate_triangle = &triangles[list[0]];
const MeshTriangle *ith_triangle;
for (s32 i : list) {
ith_triangle = &triangles[i];
if (ith_triangle->areaSQ > candidate_triangle->areaSQ ||
(ith_triangle->areaSQ == candidate_triangle->areaSQ &&
ith_triangle->centroid.getDistanceFromSQ(center) < candidate_triangle->centroid.getDistanceFromSQ(center))) {
candidate_triangle = ith_triangle;
}
}
return candidate_triangle;
}
s32 MapBlockBspTree::buildTree(v3f normal, v3f origin, float delta, const std::vector<s32> &list, u32 depth)
{
// if the list is empty, don't bother
if (list.empty())
return -1;
// if there is only one triangle, or the delta is insanely small, this is a leaf node
if (list.size() == 1 || delta < 0.01) {
nodes.emplace_back(normal, origin, list, -1, -1);
return nodes.size() - 1;
}
std::vector<s32> front_list;
std::vector<s32> back_list;
std::vector<s32> node_list;
// split the list
for (s32 i : list) {
const MeshTriangle &triangle = (*triangles)[i];
float factor = normal.dotProduct(triangle.centroid - origin);
if (factor == 0)
node_list.push_back(i);
else if (factor > 0)
front_list.push_back(i);
else
back_list.push_back(i);
}
// define the new split-plane
v3f candidate_normal(normal.Z, normal.X, normal.Y);
float candidate_delta = delta;
if (depth % 3 == 2)
candidate_delta /= 2;
s32 front_index = -1;
s32 back_index = -1;
if (!front_list.empty()) {
v3f next_normal = candidate_normal;
v3f next_origin = origin + delta * normal;
float next_delta = candidate_delta;
if (next_delta < 5) {
const MeshTriangle *candidate = findSplitCandidate(front_list, *triangles);
next_normal = candidate->getNormal();
next_origin = candidate->centroid;
}
front_index = buildTree(next_normal, next_origin, next_delta, front_list, depth + 1);
// if there are no other triangles, don't create a new node
if (back_list.empty() && node_list.empty())
return front_index;
}
if (!back_list.empty()) {
v3f next_normal = candidate_normal;
v3f next_origin = origin - delta * normal;
float next_delta = candidate_delta;
if (next_delta < 5) {
const MeshTriangle *candidate = findSplitCandidate(back_list, *triangles);
next_normal = candidate->getNormal();
next_origin = candidate->centroid;
}
back_index = buildTree(next_normal, next_origin, next_delta, back_list, depth + 1);
// if there are no other triangles, don't create a new node
if (front_list.empty() && node_list.empty())
return back_index;
}
nodes.emplace_back(normal, origin, node_list, front_index, back_index);
return nodes.size() - 1;
}
void MapBlockBspTree::traverse(s32 node, v3f viewpoint, std::vector<s32> &output) const
{
if (node < 0) return; // recursion break;
const TreeNode &n = nodes[node];
float factor = n.normal.dotProduct(viewpoint - n.origin);
if (factor > 0)
traverse(n.back_ref, viewpoint, output);
else
traverse(n.front_ref, viewpoint, output);
if (factor != 0)
for (s32 i : n.triangle_refs)
output.push_back(i);
if (factor > 0)
traverse(n.front_ref, viewpoint, output);
else
traverse(n.back_ref, viewpoint, output);
}
/*
PartialMeshBuffer
*/
void PartialMeshBuffer::beforeDraw() const
{
// Patch the indexes in the mesh buffer before draw
m_buffer->Indices = std::move(m_vertex_indexes);
m_buffer->setDirty(scene::EBT_INDEX);
}
void PartialMeshBuffer::afterDraw() const
{
// Take the data back
m_vertex_indexes = m_buffer->Indices.steal();
}
/*
MapBlockMesh
*/
MapBlockMesh::MapBlockMesh(Client *client, MeshMakeData *data, v3s16 camera_offset):
m_tsrc(client->getTextureSource()),
m_shdrsrc(client->getShaderSource()),
m_bounding_sphere_center((data->side_length * 0.5f - 0.5f) * BS),
m_animation_force_timer(0), // force initial animation
m_last_crack(-1),
m_last_daynight_ratio((u32) -1)
{
for (auto &m : m_mesh)
m = new scene::SMesh();
m_enable_shaders = data->m_use_shaders;
auto mesh_grid = client->getMeshGrid();
v3s16 bp = data->m_blockpos;
// Only generate minimap mapblocks at even coordinates.
if (mesh_grid.isMeshPos(bp) && client->getMinimap()) {
m_minimap_mapblocks.resize(mesh_grid.getCellVolume(), nullptr);
v3s16 ofs;
// See also client.cpp for the code that reads the array of minimap blocks.
for (ofs.Z = 0; ofs.Z < mesh_grid.cell_size; ofs.Z++)
for (ofs.Y = 0; ofs.Y < mesh_grid.cell_size; ofs.Y++)
for (ofs.X = 0; ofs.X < mesh_grid.cell_size; ofs.X++) {
v3s16 p = (bp + ofs) * MAP_BLOCKSIZE;
if (data->m_vmanip.getNodeNoEx(p).getContent() != CONTENT_IGNORE) {
MinimapMapblock *block = new MinimapMapblock;
m_minimap_mapblocks[mesh_grid.getOffsetIndex(ofs)] = block;
block->getMinimapNodes(&data->m_vmanip, p);
}
}
}
v3f offset = intToFloat((data->m_blockpos - mesh_grid.getMeshPos(data->m_blockpos)) * MAP_BLOCKSIZE, BS);
MeshCollector collector(m_bounding_sphere_center, offset);
/*
Add special graphics:
- torches
- flowing water
- fences
- whatever
*/
{
MapblockMeshGenerator(data, &collector,
client->getSceneManager()->getMeshManipulator()).generate();
}
/*
Convert MeshCollector to SMesh
*/
const bool desync_animations = g_settings->getBool(
"desynchronize_mapblock_texture_animation");
m_bounding_radius = std::sqrt(collector.m_bounding_radius_sq);
for (int layer = 0; layer < MAX_TILE_LAYERS; layer++) {
scene::SMesh *mesh = (scene::SMesh *)m_mesh[layer];
for(u32 i = 0; i < collector.prebuffers[layer].size(); i++)
{
PreMeshBuffer &p = collector.prebuffers[layer][i];
applyTileColor(p);
// Generate animation data
// - Cracks
if (p.layer.material_flags & MATERIAL_FLAG_CRACK) {
// Find the texture name plus ^[crack:N:
std::ostringstream os(std::ios::binary);
os << m_tsrc->getTextureName(p.layer.texture_id) << "^[crack";
if (p.layer.material_flags & MATERIAL_FLAG_CRACK_OVERLAY)
os << "o"; // use ^[cracko
u8 tiles = p.layer.scale;
if (tiles > 1)
os << ":" << (u32)tiles;
os << ":" << (u32)p.layer.animation_frame_count << ":";
m_crack_materials.insert(std::make_pair(
std::pair<u8, u32>(layer, i), os.str()));
// Replace tile texture with the cracked one
p.layer.texture = m_tsrc->getTextureForMesh(
os.str() + "0",
&p.layer.texture_id);
}
// - Texture animation
if (p.layer.material_flags & MATERIAL_FLAG_ANIMATION) {
// Add to MapBlockMesh in order to animate these tiles
auto &info = m_animation_info[{layer, i}];
info.tile = p.layer;
info.frame = 0;
if (desync_animations) {
// Get starting position from noise
info.frame_offset =
100000 * (2.0 + noise3d(
data->m_blockpos.X, data->m_blockpos.Y,
data->m_blockpos.Z, 0));
} else {
// Play all synchronized
info.frame_offset = 0;
}
// Replace tile texture with the first animation frame
p.layer.texture = (*p.layer.frames)[0].texture;
}
if (!m_enable_shaders) {
// Extract colors for day-night animation
// Dummy sunlight to handle non-sunlit areas
video::SColorf sunlight;
get_sunlight_color(&sunlight, 0);
std::map<u32, video::SColor> colors;
const u32 vertex_count = p.vertices.size();
for (u32 j = 0; j < vertex_count; j++) {
video::SColor *vc = &p.vertices[j].Color;
video::SColor copy = *vc;
if (vc->getAlpha() == 0) // No sunlight - no need to animate
final_color_blend(vc, copy, sunlight); // Finalize color
else // Record color to animate
colors[j] = copy;
// The sunlight ratio has been stored,
// delete alpha (for the final rendering).
vc->setAlpha(255);
}
if (!colors.empty())
m_daynight_diffs[{layer, i}] = std::move(colors);
}
// Create material
video::SMaterial material;
material.Lighting = false;
material.BackfaceCulling = true;
material.FogEnable = true;
material.setTexture(0, p.layer.texture);
material.forEachTexture([] (auto &tex) {
tex.MinFilter = video::ETMINF_NEAREST_MIPMAP_NEAREST;
tex.MagFilter = video::ETMAGF_NEAREST;
});
if (m_enable_shaders) {
material.MaterialType = m_shdrsrc->getShaderInfo(
p.layer.shader_id).material;
p.layer.applyMaterialOptionsWithShaders(material);
if (p.layer.normal_texture)
material.setTexture(1, p.layer.normal_texture);
material.setTexture(2, p.layer.flags_texture);
} else {
p.layer.applyMaterialOptions(material);
}
scene::SMeshBuffer *buf = new scene::SMeshBuffer();
buf->Material = material;
if (p.layer.isTransparent()) {
buf->append(&p.vertices[0], p.vertices.size(), nullptr, 0);
MeshTriangle t;
t.buffer = buf;
m_transparent_triangles.reserve(p.indices.size() / 3);
for (u32 i = 0; i < p.indices.size(); i += 3) {
t.p1 = p.indices[i];
t.p2 = p.indices[i + 1];
t.p3 = p.indices[i + 2];
t.updateAttributes();
m_transparent_triangles.push_back(t);
}
} else {
buf->append(&p.vertices[0], p.vertices.size(),
&p.indices[0], p.indices.size());
}
mesh->addMeshBuffer(buf);
buf->drop();
}
if (mesh) {
// Use VBO for mesh (this just would set this for ever buffer)
mesh->setHardwareMappingHint(scene::EHM_STATIC);
}
}
//std::cout<<"added "<<fastfaces.getSize()<<" faces."<<std::endl;
m_bsp_tree.buildTree(&m_transparent_triangles, data->side_length);
// Check if animation is required for this mesh
m_has_animation =
!m_crack_materials.empty() ||
!m_daynight_diffs.empty() ||
!m_animation_info.empty();
}
MapBlockMesh::~MapBlockMesh()
{
for (scene::IMesh *m : m_mesh) {
m->drop();
}
for (MinimapMapblock *block : m_minimap_mapblocks)
delete block;
}
bool MapBlockMesh::animate(bool faraway, float time, int crack,
u32 daynight_ratio)
{
if (!m_has_animation) {
m_animation_force_timer = 100000;
return false;
}
m_animation_force_timer = myrand_range(5, 100);
// Cracks
if (crack != m_last_crack) {
for (auto &crack_material : m_crack_materials) {
scene::IMeshBuffer *buf = m_mesh[crack_material.first.first]->
getMeshBuffer(crack_material.first.second);
// Create new texture name from original
std::string s = crack_material.second + itos(crack);
u32 new_texture_id = 0;
video::ITexture *new_texture =
m_tsrc->getTextureForMesh(s, &new_texture_id);
buf->getMaterial().setTexture(0, new_texture);
// If the current material is also animated, update animation info
auto anim_it = m_animation_info.find(crack_material.first);
if (anim_it != m_animation_info.end()) {
TileLayer &tile = anim_it->second.tile;
tile.texture = new_texture;
tile.texture_id = new_texture_id;
// force animation update
anim_it->second.frame = -1;
}
}
m_last_crack = crack;
}
// Texture animation
for (auto &it : m_animation_info) {
const TileLayer &tile = it.second.tile;
// Figure out current frame
int frameno = (int)(time * 1000 / tile.animation_frame_length_ms
+ it.second.frame_offset) % tile.animation_frame_count;
// If frame doesn't change, skip
if (frameno == it.second.frame)
continue;
it.second.frame = frameno;
scene::IMeshBuffer *buf = m_mesh[it.first.first]->getMeshBuffer(it.first.second);
const FrameSpec &frame = (*tile.frames)[frameno];
buf->getMaterial().setTexture(0, frame.texture);
if (m_enable_shaders) {
if (frame.normal_texture)
buf->getMaterial().setTexture(1, frame.normal_texture);
buf->getMaterial().setTexture(2, frame.flags_texture);
}
}
// Day-night transition
if (!m_enable_shaders && (daynight_ratio != m_last_daynight_ratio)) {
video::SColorf day_color;
get_sunlight_color(&day_color, daynight_ratio);
for (auto &daynight_diff : m_daynight_diffs) {
auto *mesh = m_mesh[daynight_diff.first.first];
mesh->setDirty(scene::EBT_VERTEX); // force reload to VBO
scene::IMeshBuffer *buf = mesh->
getMeshBuffer(daynight_diff.first.second);
video::S3DVertex *vertices = (video::S3DVertex *)buf->getVertices();
for (const auto &j : daynight_diff.second)
final_color_blend(&(vertices[j.first].Color), j.second,
day_color);
}
m_last_daynight_ratio = daynight_ratio;
}
return true;
}
void MapBlockMesh::updateTransparentBuffers(v3f camera_pos, v3s16 block_pos)
{
// nothing to do if the entire block is opaque
if (m_transparent_triangles.empty())
return;
v3f block_posf = intToFloat(block_pos * MAP_BLOCKSIZE, BS);
v3f rel_camera_pos = camera_pos - block_posf;
std::vector<s32> triangle_refs;
m_bsp_tree.traverse(rel_camera_pos, triangle_refs);
// arrange index sequences into partial buffers
m_transparent_buffers.clear();
scene::SMeshBuffer *current_buffer = nullptr;
std::vector<u16> current_strain;
for (auto i : triangle_refs) {
const auto &t = m_transparent_triangles[i];
if (current_buffer != t.buffer) {
if (current_buffer) {
m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
current_strain.clear();
}
current_buffer = t.buffer;
}
current_strain.push_back(t.p1);
current_strain.push_back(t.p2);
current_strain.push_back(t.p3);
}
if (!current_strain.empty())
m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
}
void MapBlockMesh::consolidateTransparentBuffers()
{
m_transparent_buffers.clear();
scene::SMeshBuffer *current_buffer = nullptr;
std::vector<u16> current_strain;
// use the fact that m_transparent_triangles is already arranged by buffer
for (const auto &t : m_transparent_triangles) {
if (current_buffer != t.buffer) {
if (current_buffer != nullptr) {
this->m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
current_strain.clear();
}
current_buffer = t.buffer;
}
current_strain.push_back(t.p1);
current_strain.push_back(t.p2);
current_strain.push_back(t.p3);
}
if (!current_strain.empty()) {
this->m_transparent_buffers.emplace_back(current_buffer, std::move(current_strain));
}
}
video::SColor encode_light(u16 light, u8 emissive_light)
{
// Get components
u32 day = (light & 0xff);
u32 night = (light >> 8);
// Add emissive light
night += emissive_light * 2.5f;
if (night > 255)
night = 255;
// Since we don't know if the day light is sunlight or
// artificial light, assume it is artificial when the night
// light bank is also lit.
if (day < night)
day = 0;
else
day = day - night;
u32 sum = day + night;
// Ratio of sunlight:
u32 r;
if (sum > 0)
r = day * 255 / sum;
else
r = 0;
// Average light:
float b = (day + night) / 2;
return video::SColor(r, b, b, b);
}
u8 get_solid_sides(MeshMakeData *data)
{
std::unordered_map<v3s16, u8> results;
v3s16 ofs;
v3s16 blockpos_nodes = data->m_blockpos * MAP_BLOCKSIZE;
const NodeDefManager *ndef = data->nodedef;
u8 result = 0x3F; // all sides solid;
for (s16 i = 0; i < data->side_length && result != 0; i++)
for (s16 j = 0; j < data->side_length && result != 0; j++) {
v3s16 positions[6] = {
v3s16(0, i, j),
v3s16(data->side_length - 1, i, j),
v3s16(i, 0, j),
v3s16(i, data->side_length - 1, j),
v3s16(i, j, 0),
v3s16(i, j, data->side_length - 1)
};
for (u8 k = 0; k < 6; k++) {
const MapNode &top = data->m_vmanip.getNodeRefUnsafe(blockpos_nodes + positions[k]);
if (ndef->get(top).solidness != 2)
result &= ~(1 << k);
}
}
return result;
}