minetest/src/util/serialize.h

465 lines
9.0 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef UTIL_SERIALIZE_HEADER
#define UTIL_SERIALIZE_HEADER
#include "../irrlichttypes_bloated.h"
#include "config.h"
#if HAVE_ENDIAN_H
#include <endian.h>
#include <string.h> // for memcpy
#endif
#include <iostream>
#include <string>
#define FIXEDPOINT_FACTOR 1000.0f
#define FIXEDPOINT_INVFACTOR (1.0f/FIXEDPOINT_FACTOR)
#if HAVE_ENDIAN_H
// use machine native byte swapping routines
// Note: memcpy below is optimized out by modern compilers
inline void writeU64(u8* data, u64 i)
{
u64 val = htobe64(i);
memcpy(data, &val, 8);
}
inline void writeU32(u8* data, u32 i)
{
u32 val = htobe32(i);
memcpy(data, &val, 4);
}
inline void writeU16(u8* data, u16 i)
{
u16 val = htobe16(i);
memcpy(data, &val, 2);
}
inline u64 readU64(const u8* data)
{
u64 val;
memcpy(&val, data, 8);
return be64toh(val);
}
inline u32 readU32(const u8* data)
{
u32 val;
memcpy(&val, data, 4);
return be32toh(val);
}
inline u16 readU16(const u8* data)
{
u16 val;
memcpy(&val, data, 2);
return be16toh(val);
}
#else
// generic byte-swapping implementation
inline void writeU64(u8 *data, u64 i)
{
data[0] = ((i>>56)&0xff);
data[1] = ((i>>48)&0xff);
data[2] = ((i>>40)&0xff);
data[3] = ((i>>32)&0xff);
data[4] = ((i>>24)&0xff);
data[5] = ((i>>16)&0xff);
data[6] = ((i>> 8)&0xff);
data[7] = ((i>> 0)&0xff);
}
inline void writeU32(u8 *data, u32 i)
{
data[0] = ((i>>24)&0xff);
data[1] = ((i>>16)&0xff);
data[2] = ((i>> 8)&0xff);
data[3] = ((i>> 0)&0xff);
}
inline void writeU16(u8 *data, u16 i)
{
data[0] = ((i>> 8)&0xff);
data[1] = ((i>> 0)&0xff);
}
inline u64 readU64(const u8 *data)
{
return ((u64)data[0]<<56) | ((u64)data[1]<<48)
| ((u64)data[2]<<40) | ((u64)data[3]<<32)
| ((u64)data[4]<<24) | ((u64)data[5]<<16)
| ((u64)data[6]<<8) | ((u64)data[7]<<0);
}
inline u32 readU32(const u8 *data)
{
return (data[0]<<24) | (data[1]<<16) | (data[2]<<8) | (data[3]<<0);
}
inline u16 readU16(const u8 *data)
{
return (data[0]<<8) | (data[1]<<0);
}
#endif
inline void writeU8(u8 *data, u8 i)
{
data[0] = ((i>> 0)&0xff);
}
inline u8 readU8(const u8 *data)
{
return (data[0]<<0);
}
inline void writeS32(u8 *data, s32 i){
writeU32(data, (u32)i);
}
inline s32 readS32(const u8 *data){
return (s32)readU32(data);
}
inline void writeS16(u8 *data, s16 i){
writeU16(data, (u16)i);
}
inline s16 readS16(const u8 *data){
return (s16)readU16(data);
}
inline void writeS8(u8 *data, s8 i){
writeU8(data, (u8)i);
}
inline s8 readS8(const u8 *data){
return (s8)readU8(data);
}
inline void writeF1000(u8 *data, f32 i){
writeS32(data, i*FIXEDPOINT_FACTOR);
}
inline f32 readF1000(const u8 *data){
return (f32)readS32(data)*FIXEDPOINT_INVFACTOR;
}
inline void writeV3S32(u8 *data, v3s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
writeS32(&data[8], p.Z);
}
inline v3s32 readV3S32(const u8 *data)
{
v3s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
p.Z = readS32(&data[8]);
return p;
}
inline void writeV3F1000(u8 *data, v3f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
writeF1000(&data[8], p.Z);
}
inline v3f readV3F1000(const u8 *data)
{
v3f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
p.Z = (float)readF1000(&data[8]);
return p;
}
inline void writeV2F1000(u8 *data, v2f p)
{
writeF1000(&data[0], p.X);
writeF1000(&data[4], p.Y);
}
inline v2f readV2F1000(const u8 *data)
{
v2f p;
p.X = (float)readF1000(&data[0]);
p.Y = (float)readF1000(&data[4]);
return p;
}
inline void writeV2S16(u8 *data, v2s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
}
inline v2s16 readV2S16(const u8 *data)
{
v2s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
return p;
}
inline void writeV2S32(u8 *data, v2s32 p)
{
writeS32(&data[0], p.X);
writeS32(&data[4], p.Y);
}
inline v2s32 readV2S32(const u8 *data)
{
v2s32 p;
p.X = readS32(&data[0]);
p.Y = readS32(&data[4]);
return p;
}
inline void writeV3S16(u8 *data, v3s16 p)
{
writeS16(&data[0], p.X);
writeS16(&data[2], p.Y);
writeS16(&data[4], p.Z);
}
inline v3s16 readV3S16(const u8 *data)
{
v3s16 p;
p.X = readS16(&data[0]);
p.Y = readS16(&data[2]);
p.Z = readS16(&data[4]);
return p;
}
inline void writeARGB8(u8 *data, video::SColor p)
{
writeU32(data, p.color);
}
inline video::SColor readARGB8(const u8 *data)
{
video::SColor p(readU32(data));
return p;
}
/*
The above stuff directly interfaced to iostream
*/
inline void writeU8(std::ostream &os, u8 p)
{
char buf[1];
writeU8((u8*)buf, p);
os.write(buf, 1);
}
inline u8 readU8(std::istream &is)
{
char buf[1] = {0};
is.read(buf, 1);
return readU8((u8*)buf);
}
inline void writeU16(std::ostream &os, u16 p)
{
char buf[2];
writeU16((u8*)buf, p);
os.write(buf, 2);
}
inline u16 readU16(std::istream &is)
{
char buf[2] = {0};
is.read(buf, 2);
return readU16((u8*)buf);
}
inline void writeU32(std::ostream &os, u32 p)
{
char buf[4];
writeU32((u8*)buf, p);
os.write(buf, 4);
}
inline u32 readU32(std::istream &is)
{
char buf[4] = {0};
is.read(buf, 4);
return readU32((u8*)buf);
}
inline void writeS32(std::ostream &os, s32 p)
{
writeU32(os, (u32) p);
}
inline s32 readS32(std::istream &is)
{
return (s32)readU32(is);
}
inline void writeS16(std::ostream &os, s16 p)
{
writeU16(os, (u16) p);
}
inline s16 readS16(std::istream &is)
{
return (s16)readU16(is);
}
inline void writeS8(std::ostream &os, s8 p)
{
writeU8(os, (u8) p);
}
inline s8 readS8(std::istream &is)
{
return (s8)readU8(is);
}
inline void writeF1000(std::ostream &os, f32 p)
{
char buf[4];
writeF1000((u8*)buf, p);
os.write(buf, 4);
}
inline f32 readF1000(std::istream &is)
{
char buf[4] = {0};
is.read(buf, 4);
return readF1000((u8*)buf);
}
inline void writeV3F1000(std::ostream &os, v3f p)
{
char buf[12];
writeV3F1000((u8*)buf, p);
os.write(buf, 12);
}
inline v3f readV3F1000(std::istream &is)
{
char buf[12];
is.read(buf, 12);
return readV3F1000((u8*)buf);
}
inline void writeV2F1000(std::ostream &os, v2f p)
{
char buf[8];
writeV2F1000((u8*)buf, p);
os.write(buf, 8);
}
inline v2f readV2F1000(std::istream &is)
{
char buf[8] = {0};
is.read(buf, 8);
return readV2F1000((u8*)buf);
}
inline void writeV2S16(std::ostream &os, v2s16 p)
{
char buf[4];
writeV2S16((u8*)buf, p);
os.write(buf, 4);
}
inline v2s16 readV2S16(std::istream &is)
{
char buf[4] = {0};
is.read(buf, 4);
return readV2S16((u8*)buf);
}
inline void writeV2S32(std::ostream &os, v2s32 p)
{
char buf[8];
writeV2S32((u8*)buf, p);
os.write(buf, 8);
}
inline v2s32 readV2S32(std::istream &is)
{
char buf[8] = {0};
is.read(buf, 8);
return readV2S32((u8*)buf);
}
inline void writeV3S16(std::ostream &os, v3s16 p)
{
char buf[6];
writeV3S16((u8*)buf, p);
os.write(buf, 6);
}
inline v3s16 readV3S16(std::istream &is)
{
char buf[6] = {0};
is.read(buf, 6);
return readV3S16((u8*)buf);
}
inline void writeARGB8(std::ostream &os, video::SColor p)
{
char buf[4];
writeARGB8((u8*)buf, p);
os.write(buf, 4);
}
inline video::SColor readARGB8(std::istream &is)
{
char buf[4] = {0};
is.read(buf, 4);
return readARGB8((u8*)buf);
}
/*
More serialization stuff
*/
// Creates a string with the length as the first two bytes
std::string serializeString(const std::string &plain);
// Creates a string with the length as the first two bytes from wide string
std::string serializeWideString(const std::wstring &plain);
// Reads a string with the length as the first two bytes
std::string deSerializeString(std::istream &is);
// Reads a wide string with the length as the first two bytes
std::wstring deSerializeWideString(std::istream &is);
// Creates a string with the length as the first four bytes
std::string serializeLongString(const std::string &plain);
// Reads a string with the length as the first four bytes
std::string deSerializeLongString(std::istream &is);
// Creates a string encoded in JSON format (almost equivalent to a C string literal)
std::string serializeJsonString(const std::string &plain);
// Reads a string encoded in JSON format
std::string deSerializeJsonString(std::istream &is);
// Creates a string containing comma delimited values of a struct whose layout is
// described by the parameter format
bool serializeStructToString(std::string *out,
std::string format, void *value);
// Reads a comma delimited string of values into a struct whose layout is
// decribed by the parameter format
bool deSerializeStringToStruct(std::string valstr,
std::string format, void *out, size_t olen);
#endif