minetest/src/client/particles.cpp

1078 lines
29 KiB
C++

/*
Minetest
Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "particles.h"
#include <cmath>
#include <array>
#include "client.h"
#include "collision.h"
#include "client/content_cao.h"
#include "client/clientevent.h"
#include "client/renderingengine.h"
#include "util/numeric.h"
#include "light.h"
#include "localplayer.h"
#include "environment.h"
#include "clientmap.h"
#include "mapnode.h"
#include "nodedef.h"
#include "client.h"
#include "settings.h"
#include "profiler.h"
ClientParticleTexture::ClientParticleTexture(const ServerParticleTexture& p, ITextureSource *tsrc)
{
tex = p;
// note: getTextureForMesh not needed here because we don't use texture filtering
ref = tsrc->getTexture(p.string);
}
/*
Particle
*/
Particle::Particle(
const ParticleParameters &p,
const ClientParticleTexRef &texture,
v2f texpos,
v2f texsize,
video::SColor color,
ParticleSpawner *parent,
std::unique_ptr<ClientParticleTexture> owned_texture
) :
m_expiration(p.expirationtime),
m_base_color(color),
m_texture(texture),
m_texpos(texpos),
m_texsize(texsize),
m_pos(p.pos),
m_velocity(p.vel),
m_acceleration(p.acc),
m_p(p),
m_parent(parent),
m_owned_texture(std::move(owned_texture))
{
}
Particle::~Particle()
{
if (m_buffer)
m_buffer->release(m_index);
}
bool Particle::attachToBuffer(ParticleBuffer *buffer)
{
auto index_opt = buffer->allocate();
if (index_opt.has_value()) {
m_index = index_opt.value();
m_buffer = buffer;
return true;
}
return false;
}
void Particle::step(float dtime, ClientEnvironment *env)
{
m_time += dtime;
// apply drag (not handled by collisionMoveSimple) and brownian motion
v3f av = vecAbsolute(m_velocity);
av -= av * (m_p.drag * dtime);
m_velocity = av*vecSign(m_velocity) + v3f(m_p.jitter.pickWithin())*dtime;
if (m_p.collisiondetection) {
aabb3f box(v3f(-m_p.size / 2.0f), v3f(m_p.size / 2.0f));
v3f p_pos = m_pos * BS;
v3f p_velocity = m_velocity * BS;
collisionMoveResult r = collisionMoveSimple(env, env->getGameDef(), BS * 0.5f,
box, 0.0f, dtime, &p_pos, &p_velocity, m_acceleration * BS, nullptr,
m_p.object_collision);
f32 bounciness = m_p.bounce.pickWithin();
if (r.collides && (m_p.collision_removal || bounciness > 0)) {
if (m_p.collision_removal) {
// force expiration of the particle
m_expiration = -1.0f;
} else if (bounciness > 0) {
/* cheap way to get a decent bounce effect is to only invert the
* largest component of the velocity vector, so e.g. you don't
* have a rock immediately bounce back in your face when you try
* to skip it across the water (as would happen if we simply
* downscaled and negated the velocity vector). this means
* bounciness will work properly for cubic objects, but meshes
* with diagonal angles and entities will not yield the correct
* visual. this is probably unavoidable */
if (av.Y > av.X && av.Y > av.Z) {
m_velocity.Y = -(m_velocity.Y * bounciness);
} else if (av.X > av.Y && av.X > av.Z) {
m_velocity.X = -(m_velocity.X * bounciness);
} else if (av.Z > av.Y && av.Z > av.X) {
m_velocity.Z = -(m_velocity.Z * bounciness);
} else { // well now we're in a bit of a pickle
m_velocity = -(m_velocity * bounciness);
}
}
} else {
m_velocity = p_velocity / BS;
}
m_pos = p_pos / BS;
} else {
// apply velocity and acceleration to position
m_pos += (m_velocity + m_acceleration * 0.5f * dtime) * dtime;
// apply acceleration to velocity
m_velocity += m_acceleration * dtime;
}
if (m_p.animation.type != TAT_NONE) {
m_animation_time += dtime;
int frame_length_i = 0;
m_p.animation.determineParams(
m_texture.ref->getSize(),
NULL, &frame_length_i, NULL);
float frame_length = frame_length_i / 1000.0;
while (m_animation_time > frame_length) {
m_animation_frame++;
m_animation_time -= frame_length;
}
}
// animate particle alpha in accordance with settings
float alpha = 1.f;
if (m_texture.tex != nullptr)
alpha = m_texture.tex -> alpha.blend(m_time / (m_expiration+0.1f));
// Update lighting
auto col = updateLight(env);
col.setAlpha(255 * alpha);
// Update model
updateVertices(env, col);
}
video::SColor Particle::updateLight(ClientEnvironment *env)
{
u8 light = 0;
bool pos_ok;
v3s16 p = v3s16(
floor(m_pos.X+0.5),
floor(m_pos.Y+0.5),
floor(m_pos.Z+0.5)
);
MapNode n = env->getClientMap().getNode(p, &pos_ok);
if (pos_ok)
light = n.getLightBlend(env->getDayNightRatio(),
env->getGameDef()->ndef()->getLightingFlags(n));
else
light = blend_light(env->getDayNightRatio(), LIGHT_SUN, 0);
u8 m_light = decode_light(light + m_p.glow);
return video::SColor(255,
m_light * m_base_color.getRed() / 255,
m_light * m_base_color.getGreen() / 255,
m_light * m_base_color.getBlue() / 255);
}
void Particle::updateVertices(ClientEnvironment *env, video::SColor color)
{
f32 tx0, tx1, ty0, ty1;
v2f scale;
if (!m_buffer)
return;
video::S3DVertex *vertices = m_buffer->getVertices(m_index);
if (m_texture.tex != nullptr)
scale = m_texture.tex -> scale.blend(m_time / (m_expiration+0.1));
else
scale = v2f(1.f, 1.f);
if (m_p.animation.type != TAT_NONE) {
const v2u32 texsize = m_texture.ref->getSize();
v2f texcoord, framesize_f;
v2u32 framesize;
texcoord = m_p.animation.getTextureCoords(texsize, m_animation_frame);
m_p.animation.determineParams(texsize, NULL, NULL, &framesize);
framesize_f = v2f(framesize.X / (float) texsize.X, framesize.Y / (float) texsize.Y);
tx0 = m_texpos.X + texcoord.X;
tx1 = m_texpos.X + texcoord.X + framesize_f.X * m_texsize.X;
ty0 = m_texpos.Y + texcoord.Y;
ty1 = m_texpos.Y + texcoord.Y + framesize_f.Y * m_texsize.Y;
} else {
tx0 = m_texpos.X;
tx1 = m_texpos.X + m_texsize.X;
ty0 = m_texpos.Y;
ty1 = m_texpos.Y + m_texsize.Y;
}
auto half = m_p.size * .5f,
hx = half * scale.X,
hy = half * scale.Y;
vertices[0] = video::S3DVertex(-hx, -hy,
0, 0, 0, 0, color, tx0, ty1);
vertices[1] = video::S3DVertex(hx, -hy,
0, 0, 0, 0, color, tx1, ty1);
vertices[2] = video::S3DVertex(hx, hy,
0, 0, 0, 0, color, tx1, ty0);
vertices[3] = video::S3DVertex(-hx, hy,
0, 0, 0, 0, color, tx0, ty0);
// Update position -- see #10398
auto *player = env->getLocalPlayer();
v3s16 camera_offset = env->getCameraOffset();
for (u16 i = 0; i < 4; i++) {
video::S3DVertex &vertex = vertices[i];
if (m_p.vertical) {
v3f ppos = player->getPosition() / BS;
vertex.Pos.rotateXZBy(std::atan2(ppos.Z - m_pos.Z, ppos.X - m_pos.X) /
core::DEGTORAD + 90);
} else {
vertex.Pos.rotateYZBy(player->getPitch());
vertex.Pos.rotateXZBy(player->getYaw());
}
vertex.Pos += m_pos * BS - intToFloat(camera_offset, BS);
}
}
/*
ParticleSpawner
*/
ParticleSpawner::ParticleSpawner(
LocalPlayer *player,
const ParticleSpawnerParameters &params,
u16 attached_id,
std::vector<ClientParticleTexture> &&texpool,
ParticleManager *p_manager
) :
m_active(0),
m_particlemanager(p_manager),
m_time(0.0f),
m_player(player),
p(params),
m_texpool(std::move(texpool)),
m_attached_id(attached_id)
{
m_spawntimes.reserve(p.amount + 1);
for (u16 i = 0; i <= p.amount; i++) {
float spawntime = myrand_float() * p.time;
m_spawntimes.push_back(spawntime);
}
size_t max_particles = 0; // maximum number of particles likely to be visible at any given time
if (p.time != 0) {
auto maxGenerations = p.time / std::min(p.exptime.start.min, p.exptime.end.min);
max_particles = p.amount / maxGenerations;
} else {
auto longestLife = std::max(p.exptime.start.max, p.exptime.end.max);
max_particles = p.amount * longestLife;
}
p_manager->reserveParticleSpace(max_particles * 1.2);
}
namespace {
GenericCAO *findObjectByID(ClientEnvironment *env, u16 id) {
if (id == 0)
return nullptr;
return env->getGenericCAO(id);
}
}
void ParticleSpawner::spawnParticle(ClientEnvironment *env, float radius,
const core::matrix4 *attached_absolute_pos_rot_matrix)
{
float fac = 0;
if (p.time != 0) { // ensure safety from divide-by-zeroes
fac = m_time / (p.time+0.1f);
}
auto r_pos = p.pos.blend(fac);
auto r_vel = p.vel.blend(fac);
auto r_acc = p.acc.blend(fac);
auto r_drag = p.drag.blend(fac);
auto r_radius = p.radius.blend(fac);
auto r_jitter = p.jitter.blend(fac);
auto r_bounce = p.bounce.blend(fac);
v3f attractor_origin = p.attractor_origin.blend(fac);
v3f attractor_direction = p.attractor_direction.blend(fac);
auto attractor_obj = findObjectByID(env, p.attractor_attachment);
auto attractor_direction_obj = findObjectByID(env, p.attractor_direction_attachment);
auto r_exp = p.exptime.blend(fac);
auto r_size = p.size.blend(fac);
auto r_attract = p.attract.blend(fac);
auto attract = r_attract.pickWithin();
v3f ppos = m_player->getPosition() / BS;
v3f pos = r_pos.pickWithin();
v3f sphere_radius = r_radius.pickWithin();
// Need to apply this first or the following check
// will be wrong for attached spawners
if (attached_absolute_pos_rot_matrix) {
pos *= BS;
attached_absolute_pos_rot_matrix->transformVect(pos);
pos /= BS;
v3s16 camera_offset = m_particlemanager->m_env->getCameraOffset();
pos.X += camera_offset.X;
pos.Y += camera_offset.Y;
pos.Z += camera_offset.Z;
}
if (pos.getDistanceFromSQ(ppos) > radius*radius)
return;
// Parameters for the single particle we're about to spawn
ParticleParameters pp;
pp.pos = pos;
pp.vel = r_vel.pickWithin();
pp.acc = r_acc.pickWithin();
pp.drag = r_drag.pickWithin();
pp.jitter = r_jitter;
pp.bounce = r_bounce;
if (attached_absolute_pos_rot_matrix) {
// Apply attachment rotation
attached_absolute_pos_rot_matrix->rotateVect(pp.vel);
attached_absolute_pos_rot_matrix->rotateVect(pp.acc);
}
if (attractor_obj)
attractor_origin += attractor_obj->getPosition() / BS;
if (attractor_direction_obj) {
auto *attractor_absolute_pos_rot_matrix = attractor_direction_obj->getAbsolutePosRotMatrix();
if (attractor_absolute_pos_rot_matrix)
attractor_absolute_pos_rot_matrix->rotateVect(attractor_direction);
}
pp.expirationtime = r_exp.pickWithin();
if (sphere_radius != v3f()) {
f32 l = sphere_radius.getLength();
v3f mag = sphere_radius;
mag.normalize();
v3f ofs = v3f(l,0,0);
ofs.rotateXZBy(myrand_range(0.f,360.f));
ofs.rotateYZBy(myrand_range(0.f,360.f));
ofs.rotateXYBy(myrand_range(0.f,360.f));
pp.pos += ofs * mag;
}
if (p.attractor_kind != ParticleParamTypes::AttractorKind::none && attract != 0) {
v3f dir;
f32 dist = 0; /* =0 necessary to silence warning */
switch (p.attractor_kind) {
case ParticleParamTypes::AttractorKind::none:
break;
case ParticleParamTypes::AttractorKind::point: {
dist = pp.pos.getDistanceFrom(attractor_origin);
dir = pp.pos - attractor_origin;
dir.normalize();
break;
}
case ParticleParamTypes::AttractorKind::line: {
// https://github.com/minetest/minetest/issues/11505#issuecomment-915612700
const auto& lorigin = attractor_origin;
v3f ldir = attractor_direction;
ldir.normalize();
auto origin_to_point = pp.pos - lorigin;
auto scalar_projection = origin_to_point.dotProduct(ldir);
auto point_on_line = lorigin + (ldir * scalar_projection);
dist = pp.pos.getDistanceFrom(point_on_line);
dir = (point_on_line - pp.pos);
dir.normalize();
dir *= -1; // flip it around so strength=1 attracts, not repulses
break;
}
case ParticleParamTypes::AttractorKind::plane: {
// https://github.com/minetest/minetest/issues/11505#issuecomment-915612700
const v3f& porigin = attractor_origin;
v3f normal = attractor_direction;
normal.normalize();
v3f point_to_origin = porigin - pp.pos;
f32 factor = normal.dotProduct(point_to_origin);
if (numericAbsolute(factor) == 0.0f) {
dir = normal;
} else {
factor = numericSign(factor);
dir = normal * factor;
}
dist = numericAbsolute(normal.dotProduct(pp.pos - porigin));
dir *= -1; // flip it around so strength=1 attracts, not repulses
break;
}
}
f32 speedTowards = numericAbsolute(attract) * dist;
v3f avel = dir * speedTowards;
if (attract > 0 && speedTowards > 0) {
avel *= -1;
if (p.attractor_kill) {
// make sure the particle dies after crossing the attractor threshold
f32 timeToCenter = dist / speedTowards;
if (timeToCenter < pp.expirationtime)
pp.expirationtime = timeToCenter;
}
}
pp.vel += avel;
}
p.copyCommon(pp);
ClientParticleTexRef texture;
v2f texpos, texsize;
video::SColor color(0xFFFFFFFF);
if (p.node.getContent() != CONTENT_IGNORE) {
const ContentFeatures &f =
m_particlemanager->m_env->getGameDef()->ndef()->get(p.node);
if (!ParticleManager::getNodeParticleParams(p.node, f, pp, &texture.ref,
texpos, texsize, &color, p.node_tile))
return;
} else {
if (m_texpool.size() == 0)
return;
texture = ClientParticleTexRef(m_texpool[m_texpool.size() == 1 ? 0
: myrand_range(0, m_texpool.size()-1)]);
texpos = v2f(0.0f, 0.0f);
texsize = v2f(1.0f, 1.0f);
if (texture.tex->animated)
pp.animation = texture.tex->animation;
}
// synchronize animation length with particle life if desired
if (pp.animation.type != TAT_NONE) {
// FIXME: this should be moved into a TileAnimationParams class method
if (pp.animation.type == TAT_VERTICAL_FRAMES &&
pp.animation.vertical_frames.length < 0) {
auto& a = pp.animation.vertical_frames;
// we add a tiny extra value to prevent the first frame
// from flickering back on just before the particle dies
a.length = (pp.expirationtime / -a.length) + 0.1;
} else if (pp.animation.type == TAT_SHEET_2D &&
pp.animation.sheet_2d.frame_length < 0) {
auto& a = pp.animation.sheet_2d;
auto frames = a.frames_w * a.frames_h;
auto runtime = (pp.expirationtime / -a.frame_length) + 0.1;
pp.animation.sheet_2d.frame_length = frames / runtime;
}
}
// Allow keeping default random size
if (p.size.start.max > 0.0f || p.size.end.max > 0.0f)
pp.size = r_size.pickWithin();
++m_active;
m_particlemanager->addParticle(std::make_unique<Particle>(
pp,
texture,
texpos,
texsize,
color,
this
));
}
void ParticleSpawner::step(float dtime, ClientEnvironment *env)
{
m_time += dtime;
static thread_local const float radius =
g_settings->getS16("max_block_send_distance") * MAP_BLOCKSIZE;
bool unloaded = false;
const core::matrix4 *attached_absolute_pos_rot_matrix = nullptr;
if (m_attached_id) {
if (GenericCAO *attached = env->getGenericCAO(m_attached_id)) {
attached_absolute_pos_rot_matrix = attached->getAbsolutePosRotMatrix();
} else {
unloaded = true;
}
}
if (p.time != 0) {
// Spawner exists for a predefined timespan
for (auto i = m_spawntimes.begin(); i != m_spawntimes.end(); ) {
if ((*i) <= m_time && p.amount > 0) {
--p.amount;
// Pretend to, but don't actually spawn a particle if it is
// attached to an unloaded object or distant from player.
if (!unloaded)
spawnParticle(env, radius, attached_absolute_pos_rot_matrix);
i = m_spawntimes.erase(i);
} else {
++i;
}
}
} else {
// Spawner exists for an infinity timespan, spawn on a per-second base
// Skip this step if attached to an unloaded object
if (unloaded)
return;
for (int i = 0; i <= p.amount; i++) {
if (myrand_float() < dtime)
spawnParticle(env, radius, attached_absolute_pos_rot_matrix);
}
}
}
/*
ParticleBuffer
*/
ParticleBuffer::ParticleBuffer(ClientEnvironment *env, const video::SMaterial &material)
: scene::ISceneNode(
env->getGameDef()->getSceneManager()->getRootSceneNode(),
env->getGameDef()->getSceneManager()),
m_mesh_buffer(make_irr<scene::SMeshBuffer>())
{
m_mesh_buffer->getMaterial() = material;
}
static constexpr u16 quad_indices[] = { 0, 1, 2, 2, 3, 0 };
std::optional<u16> ParticleBuffer::allocate()
{
u16 index;
m_usage_timer = 0;
if (!m_free_list.empty()) {
index = m_free_list.back();
m_free_list.pop_back();
auto *vertices = static_cast<video::S3DVertex*>(m_mesh_buffer->getVertices());
u16 *indices = m_mesh_buffer->getIndices();
// reset vertices, because it is only written in Particle::step()
for (u16 i = 0; i < 4; i++)
vertices[4 * index + i] = video::S3DVertex();
for (u16 i = 0; i < 6; i++)
indices[6 * index + i] = 4 * index + quad_indices[i];
return index;
}
if (m_count >= MAX_PARTICLES_PER_BUFFER)
return std::nullopt;
// append new vertices
// note: Our buffer never gets smaller, but ParticleManager will delete
// us after a while.
std::array<video::S3DVertex, 4> vertices {};
m_mesh_buffer->append(&vertices.front(), 4, quad_indices, 6);
index = m_count++;
return index;
}
void ParticleBuffer::release(u16 index)
{
assert(index < m_count);
u16 *indices = m_mesh_buffer->getIndices();
for (u16 i = 0; i < 6; i++)
indices[6 * index + i] = 0;
m_free_list.push_back(index);
}
video::S3DVertex *ParticleBuffer::getVertices(u16 index)
{
if (index >= m_count)
return nullptr;
m_bounding_box_dirty = true;
return &(static_cast<video::S3DVertex *>(m_mesh_buffer->getVertices())[4 * index]);
}
void ParticleBuffer::OnRegisterSceneNode()
{
if (IsVisible)
SceneManager->registerNodeForRendering(this, scene::ESNRP_TRANSPARENT_EFFECT);
scene::ISceneNode::OnRegisterSceneNode();
}
const core::aabbox3df &ParticleBuffer::getBoundingBox() const
{
if (!m_bounding_box_dirty)
return m_mesh_buffer->BoundingBox;
core::aabbox3df box;
for (u16 i = 0; i < m_count; i++) {
// check if this index is used
static_assert(quad_indices[1] != 0);
if (m_mesh_buffer->getIndices()[6 * i + 1] == 0)
continue;
for (u16 j = 0; j < 4; j++)
box.addInternalPoint(m_mesh_buffer->getPosition(i * 4 + j));
}
m_mesh_buffer->BoundingBox = box;
m_bounding_box_dirty = false;
return m_mesh_buffer->BoundingBox;
}
void ParticleBuffer::render()
{
video::IVideoDriver *driver = SceneManager->getVideoDriver();
if (isEmpty())
return;
driver->setTransform(video::ETS_WORLD, core::matrix4());
driver->setMaterial(m_mesh_buffer->getMaterial());
driver->drawMeshBuffer(m_mesh_buffer.get());
}
/*
ParticleManager
*/
ParticleManager::ParticleManager(ClientEnvironment *env) :
m_env(env)
{}
ParticleManager::~ParticleManager()
{
clearAll();
}
void ParticleManager::step(float dtime)
{
stepParticles(dtime);
stepSpawners(dtime);
stepBuffers(dtime);
}
void ParticleManager::stepSpawners(float dtime)
{
MutexAutoLock lock(m_spawner_list_lock);
for (size_t i = 0; i < m_dying_particle_spawners.size();) {
// the particlespawner owns the textures, so we need to make
// sure there are no active particles before we free it
if (!m_dying_particle_spawners[i]->hasActive()) {
m_dying_particle_spawners[i] = std::move(m_dying_particle_spawners.back());
m_dying_particle_spawners.pop_back();
} else {
++i;
}
}
for (auto it = m_particle_spawners.begin(); it != m_particle_spawners.end();) {
auto &ps = it->second;
if (ps->getExpired()) {
// same as above
if (ps->hasActive())
m_dying_particle_spawners.push_back(std::move(ps));
it = m_particle_spawners.erase(it);
} else {
ps->step(dtime, m_env);
++it;
}
}
}
void ParticleManager::stepParticles(float dtime)
{
MutexAutoLock lock(m_particle_list_lock);
for (size_t i = 0; i < m_particles.size();) {
Particle &p = *m_particles[i];
if (p.isExpired()) {
ParticleSpawner *parent = p.getParent();
if (parent) {
assert(parent->hasActive());
parent->decrActive();
}
// delete
m_particles[i] = std::move(m_particles.back());
m_particles.pop_back();
} else {
p.step(dtime, m_env);
++i;
}
}
}
void ParticleManager::stepBuffers(float dtime)
{
constexpr float INTERVAL = 0.5f;
if (!m_buffer_gc.step(dtime, INTERVAL))
return;
MutexAutoLock lock(m_particle_list_lock);
// remove buffers that have been unused for 5 seconds
size_t alloc = 0;
for (size_t i = 0; i < m_particle_buffers.size(); ) {
auto &buf = m_particle_buffers[i];
buf->m_usage_timer += INTERVAL;
if (buf->isEmpty() && buf->m_usage_timer > 5.0f) {
// delete and swap with last
buf->remove();
buf = std::move(m_particle_buffers.back());
m_particle_buffers.pop_back();
} else {
i++;
alloc += buf->m_count;
}
}
g_profiler->avg("ParticleManager: particle buffer count [#]", m_particle_buffers.size());
if (!m_particle_buffers.empty())
g_profiler->avg("ParticleManager: buffer allocated size [#]", alloc);
}
void ParticleManager::clearAll()
{
MutexAutoLock lock(m_spawner_list_lock);
MutexAutoLock lock2(m_particle_list_lock);
m_particle_spawners.clear();
m_dying_particle_spawners.clear();
m_particles.clear();
// have to remove from scene first because it keeps a reference
for (auto &it : m_particle_buffers)
it->remove();
m_particle_buffers.clear();
}
void ParticleManager::handleParticleEvent(ClientEvent *event, Client *client,
LocalPlayer *player)
{
switch (event->type) {
case CE_DELETE_PARTICLESPAWNER: {
deleteParticleSpawner(event->delete_particlespawner.id);
// no allocated memory in delete event
break;
}
case CE_ADD_PARTICLESPAWNER: {
deleteParticleSpawner(event->add_particlespawner.id);
const ParticleSpawnerParameters &p = *event->add_particlespawner.p;
// texture pool
std::vector<ClientParticleTexture> texpool;
if (!p.texpool.empty()) {
size_t txpsz = p.texpool.size();
texpool.reserve(txpsz);
for (size_t i = 0; i < txpsz; ++i) {
texpool.emplace_back(p.texpool[i], client->tsrc());
}
} else {
// no texpool in use, use fallback texture
texpool.emplace_back(p.texture, client->tsrc());
}
addParticleSpawner(event->add_particlespawner.id,
std::make_unique<ParticleSpawner>(
player,
p,
event->add_particlespawner.attached_id,
std::move(texpool),
this)
);
delete event->add_particlespawner.p;
break;
}
case CE_SPAWN_PARTICLE: {
ParticleParameters &p = *event->spawn_particle;
ClientParticleTexRef texture;
std::unique_ptr<ClientParticleTexture> texstore;
v2f texpos, texsize;
video::SColor color(0xFFFFFFFF);
f32 oldsize = p.size;
if (p.node.getContent() != CONTENT_IGNORE) {
const ContentFeatures &f = m_env->getGameDef()->ndef()->get(p.node);
getNodeParticleParams(p.node, f, p, &texture.ref, texpos,
texsize, &color, p.node_tile);
} else {
/* with no particlespawner to own the texture, we need
* to save it on the heap. it will be freed when the
* particle is destroyed */
texstore = std::make_unique<ClientParticleTexture>(p.texture, client->tsrc());
texture = ClientParticleTexRef(*texstore);
texpos = v2f(0.0f, 0.0f);
texsize = v2f(1.0f, 1.0f);
}
// Allow keeping default random size
if (oldsize > 0.0f)
p.size = oldsize;
if (texture.ref) {
addParticle(std::make_unique<Particle>(
p, texture, texpos, texsize, color, nullptr,
std::move(texstore)));
}
delete event->spawn_particle;
break;
}
default: break;
}
}
bool ParticleManager::getNodeParticleParams(const MapNode &n,
const ContentFeatures &f, ParticleParameters &p, video::ITexture **texture,
v2f &texpos, v2f &texsize, video::SColor *color, u8 tilenum)
{
// No particles for "airlike" nodes
if (f.drawtype == NDT_AIRLIKE)
return false;
// Texture
u8 texid;
if (tilenum > 0 && tilenum <= 6)
texid = tilenum - 1;
else
texid = myrand_range(0,5);
const TileLayer &tile = f.tiles[texid].layers[0];
p.animation.type = TAT_NONE;
// Only use first frame of animated texture
if (tile.material_flags & MATERIAL_FLAG_ANIMATION)
*texture = (*tile.frames)[0].texture;
else
*texture = tile.texture;
float size = (myrand_range(0,8)) / 64.0f;
p.size = BS * size;
if (tile.scale)
size /= tile.scale;
texsize = v2f(size * 2.0f, size * 2.0f);
texpos.X = (myrand_range(0,64)) / 64.0f - texsize.X;
texpos.Y = (myrand_range(0,64)) / 64.0f - texsize.Y;
if (tile.has_color)
*color = tile.color;
else
n.getColor(f, color);
return true;
}
// The final burst of particles when a node is finally dug, *not* particles
// spawned during the digging of a node.
void ParticleManager::addDiggingParticles(IGameDef *gamedef,
LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f)
{
// No particles for "airlike" nodes
if (f.drawtype == NDT_AIRLIKE)
return;
for (u16 j = 0; j < 16; j++) {
addNodeParticle(gamedef, player, pos, n, f);
}
}
// During the digging of a node particles are spawned individually by this
// function, called from Game::handleDigging() in game.cpp.
void ParticleManager::addNodeParticle(IGameDef *gamedef,
LocalPlayer *player, v3s16 pos, const MapNode &n, const ContentFeatures &f)
{
ParticleParameters p;
video::ITexture *ref = nullptr;
v2f texpos, texsize;
video::SColor color;
if (!getNodeParticleParams(n, f, p, &ref, texpos, texsize, &color))
return;
p.expirationtime = myrand_range(0, 100) / 100.0f;
// Physics
p.vel = v3f(
myrand_range(-1.5f,1.5f),
myrand_range(0.f,3.f),
myrand_range(-1.5f,1.5f)
);
p.acc = v3f(
0.0f,
-player->movement_gravity * player->physics_override.gravity / BS,
0.0f
);
p.pos = v3f(
(f32)pos.X + myrand_range(0.f, .5f) - .25f,
(f32)pos.Y + myrand_range(0.f, .5f) - .25f,
(f32)pos.Z + myrand_range(0.f, .5f) - .25f
);
addParticle(std::make_unique<Particle>(
p,
ClientParticleTexRef(ref),
texpos,
texsize,
color));
}
void ParticleManager::reserveParticleSpace(size_t max_estimate)
{
MutexAutoLock lock(m_particle_list_lock);
m_particles.reserve(m_particles.size() + max_estimate);
}
video::SMaterial ParticleManager::getMaterialForParticle(const ClientParticleTexRef &texture)
{
// translate blend modes to GL blend functions
video::E_BLEND_FACTOR bfsrc, bfdst;
video::E_BLEND_OPERATION blendop;
const auto blendmode = texture.tex ? texture.tex->blendmode :
ParticleParamTypes::BlendMode::alpha;
switch (blendmode) {
case ParticleParamTypes::BlendMode::add:
bfsrc = video::EBF_SRC_ALPHA;
bfdst = video::EBF_DST_ALPHA;
blendop = video::EBO_ADD;
break;
case ParticleParamTypes::BlendMode::sub:
bfsrc = video::EBF_SRC_ALPHA;
bfdst = video::EBF_DST_ALPHA;
blendop = video::EBO_REVSUBTRACT;
break;
case ParticleParamTypes::BlendMode::screen:
bfsrc = video::EBF_ONE;
bfdst = video::EBF_ONE_MINUS_SRC_COLOR;
blendop = video::EBO_ADD;
break;
default: // includes ParticleParamTypes::BlendMode::alpha
bfsrc = video::EBF_SRC_ALPHA;
bfdst = video::EBF_ONE_MINUS_SRC_ALPHA;
blendop = video::EBO_ADD;
break;
}
video::SMaterial material;
// Texture
material.Lighting = false;
material.BackfaceCulling = false;
material.FogEnable = true;
material.forEachTexture([] (auto &tex) {
tex.MinFilter = video::ETMINF_NEAREST_MIPMAP_NEAREST;
tex.MagFilter = video::ETMAGF_NEAREST;
});
// We don't have working transparency sorting. Disable Z-Write for
// correct results for clipped-alpha at least.
material.ZWriteEnable = video::EZW_OFF;
// enable alpha blending and set blend mode
material.MaterialType = video::EMT_ONETEXTURE_BLEND;
material.MaterialTypeParam = video::pack_textureBlendFunc(
bfsrc, bfdst,
video::EMFN_MODULATE_1X,
video::EAS_TEXTURE | video::EAS_VERTEX_COLOR);
material.BlendOperation = blendop;
assert(texture.ref);
material.setTexture(0, texture.ref);
return material;
}
bool ParticleManager::addParticle(std::unique_ptr<Particle> toadd)
{
MutexAutoLock lock(m_particle_list_lock);
auto material = getMaterialForParticle(toadd->getTextureRef());
ParticleBuffer *found = nullptr;
// simple shortcut when multiple particles of the same type get added
if (!m_particles.empty()) {
auto &last = m_particles.back();
if (last->getBuffer() && last->getBuffer()->getMaterial(0) == material)
found = last->getBuffer();
}
// search fitting buffer
if (!found) {
for (auto &buffer : m_particle_buffers) {
if (buffer->getMaterial(0) == material) {
found = buffer.get();
break;
}
}
}
// or create a new one
if (!found) {
auto tmp = make_irr<ParticleBuffer>(m_env, material);
found = tmp.get();
m_particle_buffers.push_back(std::move(tmp));
}
if (!toadd->attachToBuffer(found)) {
infostream << "ParticleManager: buffer full, dropping particle" << std::endl;
return false;
}
m_particles.push_back(std::move(toadd));
return true;
}
void ParticleManager::addParticleSpawner(u64 id, std::unique_ptr<ParticleSpawner> toadd)
{
MutexAutoLock lock(m_spawner_list_lock);
auto &slot = m_particle_spawners[id];
if (slot) {
// do not kill spawners here. children are still alive
errorstream << "ParticleManager: Failed to add spawner with id " << id
<< ". Id already in use." << std::endl;
return;
}
slot = std::move(toadd);
}
void ParticleManager::deleteParticleSpawner(u64 id)
{
MutexAutoLock lock(m_spawner_list_lock);
auto it = m_particle_spawners.find(id);
if (it != m_particle_spawners.end()) {
m_dying_particle_spawners.push_back(std::move(it->second));
m_particle_spawners.erase(it);
}
}