Comment and clarify

This commit is contained in:
Gael-de-Sailly 2020-04-26 17:13:38 +02:00
parent 49bc397718
commit 6af6795d90
9 changed files with 105 additions and 36 deletions

View File

@ -1,17 +1,17 @@
mapgen_rivers mapgen_rivers
============= =============
Procedural map generator for Minetest 5.x. Still experimental and basic. Procedural map generator for Minetest 5.x. Focused on river networks, and features valley erosion and lakes.
Contains two distinct programs: Python scripts for pre-processing, and Lua scripts to generate the map on Minetest. Contains two distinct programs: Python scripts for pre-processing, and Lua scripts to generate the map on Minetest.
![Screenshot](https://user-images.githubusercontent.com/6905002/79073532-7a567f00-7ce7-11ea-9791-8fb453f5175d.png) ![Screenshot](https://user-images.githubusercontent.com/6905002/79541028-687b3000-8089-11ea-9209-c23c15d75383.png)
# Installation # Installation
This mod should be placed in the `/mods` directory like any other Minetest mod. This mod should be placed in the `/mods` directory like any other Minetest mod.
The Python part relies on external libraries that you need to install: The Python part relies on external libraries that you need to install:
- `numpy`, a widely used library for numerical calculations - `numpy` and `scipy`, widely used libraries for numerical calculations
- `noise`, doing Perlin/Simplex noises - `noise`, doing Perlin/Simplex noises
- optionally, `matplotlib` (for map preview) - optionally, `matplotlib` (for map preview)
@ -23,7 +23,7 @@ Run the script `terrain_rivers.py` via command line. You can optionally append t
``` ```
./terrain_rivers.py 1000 ./terrain_rivers.py 1000
``` ```
For a default 400x400 map, it should take between 1 and 2 minutes. It will generate 5 files directly in the mod folder, containing the map data (1.4 MB for the default size). For a default 401x401 map, it should take between 1 and 2 minutes. It will generate 5 files directly in the mod folder, containing the map data.
## Map generation ## Map generation
Just create a Minetest world with `singlenode` mapgen, enable this mod and start the world. The data files are immediately copied in the world folder so you can re-generate them afterwards, it won't affect the old worlds. Just create a Minetest world with `singlenode` mapgen, enable this mod and start the world. The data files are immediately copied in the world folder so you can re-generate them afterwards, it won't affect the old worlds.

View File

@ -1,7 +1,10 @@
import numpy as np import numpy as np
import matplotlib.pyplot as plt
def make_bounds(dirs, rivers): def make_bounds(dirs, rivers):
"""
Give an array of all horizontal and vertical bounds
"""
(Y, X) = dirs.shape (Y, X) = dirs.shape
bounds_h = np.zeros((Y, X-1), dtype='i4') bounds_h = np.zeros((Y, X-1), dtype='i4')
bounds_v = np.zeros((Y-1, X), dtype='i4') bounds_v = np.zeros((Y-1, X), dtype='i4')
@ -14,6 +17,10 @@ def make_bounds(dirs, rivers):
return bounds_h, bounds_v return bounds_h, bounds_v
def get_fixed(dirs): def get_fixed(dirs):
"""
Give the list of points that should not be twisted
"""
borders = np.zeros(dirs.shape, dtype='?') borders = np.zeros(dirs.shape, dtype='?')
borders[-1,:] |= dirs[-1,:]==1 borders[-1,:] |= dirs[-1,:]==1
borders[:,-1] |= dirs[:,-1]==2 borders[:,-1] |= dirs[:,-1]==2
@ -28,6 +35,11 @@ def get_fixed(dirs):
return borders | ~donors return borders | ~donors
def twist(bounds_x, bounds_y, fixed, d=0.1, n=5): def twist(bounds_x, bounds_y, fixed, d=0.1, n=5):
"""
Twist the grid (define an offset for every node). Model river bounds as if they were elastics.
Smoothes preferentially big rivers.
"""
moveable = ~fixed moveable = ~fixed
(Y, X) = fixed.shape (Y, X) = fixed.shape
@ -55,7 +67,7 @@ def twist(bounds_x, bounds_y, fixed, d=0.1, n=5):
length = np.hypot(force_x, force_y) length = np.hypot(force_x, force_y)
length[length==0] = 1 length[length==0] = 1
coeff = d / length * moveable coeff = d / length * moveable # Normalize, take into account the direction only
offset_x += force_x * coeff offset_x += force_x * coeff
offset_y += force_y * coeff offset_y += force_y * coeff

View File

@ -3,22 +3,33 @@ import scipy.ndimage as im
import rivermapper as rm import rivermapper as rm
def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0): def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0):
"""
Simulate erosion by rivers.
This models erosion as an upstream advection of elevations ("erosion waves").
Advection speed depends on water flux and parameters:
v = K * flux^m
"""
dirs = dirs.copy() dirs = dirs.copy()
dirs[0,:] = 0 dirs[0,:] = 0
dirs[-1,:] = 0 dirs[-1,:] = 0
dirs[:,0] = 0 dirs[:,0] = 0
dirs[:,-1] = 0 dirs[:,-1] = 0
adv_time = 1 / (K*rivers**m) adv_time = 1 / (K*rivers**m) # For every pixel, calculate the time an "erosion wave" will need to cross it.
dem = np.maximum(dem, sea_level) dem = np.maximum(dem, sea_level)
dem_new = np.zeros(dem.shape) dem_new = np.zeros(dem.shape)
for y in range(dirs.shape[0]): for y in range(dirs.shape[0]):
for x in range(dirs.shape[1]): for x in range(dirs.shape[1]):
# Elevations propagate upstream, so for every pixel we seek the downstream pixel whose erosion wave just reached the current pixel.
# This means summing the advection times downstream until we reach the erosion time.
x0, y0 = x, y x0, y0 = x, y
x1, y1 = x, y x1, y1 = x, y
remaining = time remaining = time
while True: while True:
# Move one pixel downstream
flow_dir = dirs[y0,x0] flow_dir = dirs[y0,x0]
if flow_dir == 0: if flow_dir == 0:
remaining = 0 remaining = 0
@ -32,19 +43,19 @@ def advection(dem, dirs, rivers, time, K=1, m=0.5, sea_level=0):
elif flow_dir == 4: elif flow_dir == 4:
x1 -= 1 x1 -= 1
if remaining <= adv_time[y0,x0]: if remaining <= adv_time[y0,x0]: # Time is over, we found it.
break break
remaining -= adv_time[y0,x0] remaining -= adv_time[y0,x0]
x0, y0 = x1, y1 x0, y0 = x1, y1
c = remaining / adv_time[y0,x0] c = remaining / adv_time[y0,x0]
dem_new[y,x] = c*dem[y1,x1] + (1-c)*dem[y0,x0] dem_new[y,x] = c*dem[y1,x1] + (1-c)*dem[y0,x0] # If between 2 pixels, perform linear interpolation.
return np.minimum(dem, dem_new) return np.minimum(dem, dem_new)
def diffusion(dem, time, d=1): def diffusion(dem, time, d=1):
radius = d * time**.5 radius = d * time**.5
return im.gaussian_filter(dem, radius, mode='reflect') return im.gaussian_filter(dem, radius, mode='reflect') # Diffusive erosion is a simple Gaussian blur
class EvolutionModel: class EvolutionModel:
def __init__(self, dem, K=1, m=0.5, d=1, sea_level=0, flow=False, flex_radius=100): def __init__(self, dem, K=1, m=0.5, d=1, sea_level=0, flow=False, flex_radius=100):
@ -78,9 +89,9 @@ class EvolutionModel:
self.flow_uptodate = False self.flow_uptodate = False
def define_isostasy(self): def define_isostasy(self):
self.ref_isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') self.ref_isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Define a blurred version of the DEM that will be considered as the reference isostatic elevation.
def adjust_isostasy(self, rate=1): def adjust_isostasy(self, rate=1):
isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') isostasy = im.gaussian_filter(self.dem, self.flex_radius, mode='reflect') # Calculate blurred DEM
correction = (self.ref_isostasy - isostasy) * rate correction = (self.ref_isostasy - isostasy) * rate # Compare it with the reference isostasy
self.dem = self.dem + correction self.dem = self.dem + correction # Adjust

View File

@ -1,27 +1,33 @@
local function distance_to_segment(x1, y1, x2, y2, x, y) local function distance_to_segment(x1, y1, x2, y2, x, y)
-- get the distance between point (x,y) and segment (x1,y1)-(x2,y2) -- get the distance between point (x,y) and segment (x1,y1)-(x2,y2)
local a = (x1-x2)^2 + (y1-y2)^2 local a = (x1-x2)^2 + (y1-y2)^2 -- square of distance
local b = (x1-x)^2 + (y1-y)^2 local b = (x1-x)^2 + (y1-y)^2
local c = (x2-x)^2 + (y2-y)^2 local c = (x2-x)^2 + (y2-y)^2
if a + b < c then if a + b < c then
-- The closest point of the segment is the extremity 1
return math.sqrt(b) return math.sqrt(b)
elseif a + c < b then elseif a + c < b then
-- The closest point of the segment is the extremity 2
return math.sqrt(c) return math.sqrt(c)
else else
-- The closest point is on the segment
return math.abs(x1 * (y2-y) + x2 * (y-y1) + x * (y1-y2)) / math.sqrt(a) return math.abs(x1 * (y2-y) + x2 * (y-y1) + x * (y1-y2)) / math.sqrt(a)
end end
end end
local function transform_quadri(X, Y, x, y) local function transform_quadri(X, Y, x, y)
-- X, Y 4-vectors giving the coordinates of the 4 nodes -- To index points in an irregular quadrilateral, giving x and y between 0 (one edge) and 1 (opposite edge)
-- X, Y 4-vectors giving the coordinates of the 4 vertices
-- x, y position to index. -- x, y position to index.
local x1, x2, x3, x4 = unpack(X) local x1, x2, x3, x4 = unpack(X)
local y1, y2, y3, y4 = unpack(Y) local y1, y2, y3, y4 = unpack(Y)
-- Compare distance to 2 opposite edges, they give the X coordinate
local d23 = distance_to_segment(x2,y2,x3,y3,x,y) local d23 = distance_to_segment(x2,y2,x3,y3,x,y)
local d41 = distance_to_segment(x4,y4,x1,y1,x,y) local d41 = distance_to_segment(x4,y4,x1,y1,x,y)
local xc = d41 / (d23+d41) local xc = d41 / (d23+d41)
-- Same for the 2 other edges, they give the Y coordinate
local d12 = distance_to_segment(x1,y1,x2,y2,x,y) local d12 = distance_to_segment(x1,y1,x2,y2,x,y)
local d34 = distance_to_segment(x3,y3,x4,y4,x,y) local d34 = distance_to_segment(x3,y3,x4,y4,x,y)
local yc = d12 / (d12+d34) local yc = d12 / (d12+d34)

View File

@ -12,6 +12,7 @@ local make_polygons = dofile(modpath .. 'polygons.lua')
local transform_quadri = dofile(modpath .. 'geometry.lua') local transform_quadri = dofile(modpath .. 'geometry.lua')
-- Linear interpolation
local function interp(v00, v01, v11, v10, xf, zf) local function interp(v00, v01, v11, v10, xf, zf)
local v0 = v01*xf + v00*(1-xf) local v0 = v01*xf + v00*(1-xf)
local v1 = v11*xf + v10*(1-xf) local v1 = v11*xf + v10*(1-xf)
@ -44,6 +45,7 @@ local function generate(minp, maxp, seed)
local xf, zf = transform_quadri(poly.x, poly.z, x/blocksize, z/blocksize) local xf, zf = transform_quadri(poly.x, poly.z, x/blocksize, z/blocksize)
local i00, i01, i11, i10 = unpack(poly.i) local i00, i01, i11, i10 = unpack(poly.i)
-- Test the 4 edges to see whether we are in a river or not
local is_river = false local is_river = false
local depth_factor = 0 local depth_factor = 0
local r_west, r_north, r_east, r_south = unpack(poly.rivers) local r_west, r_north, r_east, r_south = unpack(poly.rivers)
@ -66,7 +68,7 @@ local function generate(minp, maxp, seed)
zf = 0 zf = 0
end end
if not is_river then if not is_river then -- Test corners also
local c_NW, c_NE, c_SE, c_SW = unpack(poly.river_corners) local c_NW, c_NE, c_SE, c_SW = unpack(poly.river_corners)
if xf+zf < c_NW then if xf+zf < c_NW then
is_river = true is_river = true
@ -87,7 +89,7 @@ local function generate(minp, maxp, seed)
end end
end end
if not is_river then if not is_river then -- Redefine indicesto have 0/1 on the riverbanks (avoids ugly edge cuts, at least for small rivers)
xf = (xf-r_west) / (r_east-r_west) xf = (xf-r_west) / (r_east-r_west)
zf = (zf-r_north) / (r_south-r_north) zf = (zf-r_north) / (r_south-r_north)
end end

View File

@ -44,6 +44,7 @@ for k, v in ipairs(offset_z) do
offset_z[k] = (v+0.5)/256 offset_z[k] = (v+0.5)/256
end end
-- To index a flat array representing a 2D map
local function index(x, z) local function index(x, z)
return z*X+x+1 return z*X+x+1
end end
@ -66,26 +67,33 @@ local function river_width(flow)
return math.min(wfactor * flow ^ wpower, 1) return math.min(wfactor * flow ^ wpower, 1)
end end
-- On map generation, determine into which polygon every point (in 2D) will fall.
-- Also store polygon-specific data
local function make_polygons(minp, maxp) local function make_polygons(minp, maxp)
local chulens = maxp.z - minp.z + 1 local chulens = maxp.z - minp.z + 1
local polygons = {} local polygons = {}
-- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize.
local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2) local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2)
local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2) local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2)
-- Iterate over the polygons
for xp = xpmin, xpmax do for xp = xpmin, xpmax do
for zp=zpmin, zpmax do for zp=zpmin, zpmax do
local iA = index(xp, zp) local iA = index(xp, zp)
local iB = index(xp+1, zp) local iB = index(xp+1, zp)
local iC = index(xp+1, zp+1) local iC = index(xp+1, zp+1)
local iD = index(xp, zp+1) local iD = index(xp, zp+1)
-- Extract the vertices of the polygon
local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp} local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp}
local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1} local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1}
local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}} local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}}
local bounds = {} local bounds = {} -- Will be a list of the intercepts of polygon edges for every X position (scanline algorithm)
-- Calculate the min and max X positions
local xmin = math.max(math.floor(blocksize*math.min(unpack(poly_x)))+1, minp.x) local xmin = math.max(math.floor(blocksize*math.min(unpack(poly_x)))+1, minp.x)
local xmax = math.min(math.floor(blocksize*math.max(unpack(poly_x))), maxp.x) local xmax = math.min(math.floor(blocksize*math.max(unpack(poly_x))), maxp.x)
-- And initialize the arrays
for x=xmin, xmax do for x=xmin, xmax do
bounds[x] = {} bounds[x] = {}
end end
@ -93,27 +101,33 @@ local function make_polygons(minp, maxp)
local i1 = 4 local i1 = 4
for i2=1, 4 do -- Loop on 4 edges for i2=1, 4 do -- Loop on 4 edges
local x1, x2 = poly_x[i1], poly_x[i2] local x1, x2 = poly_x[i1], poly_x[i2]
-- Calculate the integer X positions over which this edge spans
local lxmin = math.floor(blocksize*math.min(x1, x2))+1 local lxmin = math.floor(blocksize*math.min(x1, x2))+1
local lxmax = math.floor(blocksize*math.max(x1, x2)) local lxmax = math.floor(blocksize*math.max(x1, x2))
if lxmin <= lxmax then if lxmin <= lxmax then -- If there is at least one position in it
local z1, z2 = poly_z[i1], poly_z[i2] local z1, z2 = poly_z[i1], poly_z[i2]
-- Calculate coefficient of the equation defining the edge: Z=aX+b
local a = (z1-z2) / (x1-x2) local a = (z1-z2) / (x1-x2)
local b = blocksize*(z1 - a*x1) local b = blocksize*(z1 - a*x1)
for x=math.max(lxmin, minp.x), math.min(lxmax, maxp.x) do for x=math.max(lxmin, minp.x), math.min(lxmax, maxp.x) do
-- For every X position involved, add the intercepted Z position in the table
table.insert(bounds[x], a*x+b) table.insert(bounds[x], a*x+b)
end end
end end
i1 = i2 i1 = i2
end end
for x=xmin, xmax do for x=xmin, xmax do
-- Now sort the bounds list
local xlist = bounds[x] local xlist = bounds[x]
table.sort(xlist) table.sort(xlist)
local c = math.floor(#xlist/2) local c = math.floor(#xlist/2)
for l=1, c do for l=1, c do
-- Take pairs of Z coordinates: all positions between them belong to the polygon.
local zmin = math.max(math.floor(xlist[l*2-1])+1, minp.z) local zmin = math.max(math.floor(xlist[l*2-1])+1, minp.z)
local zmax = math.min(math.floor(xlist[l*2]), maxp.z) local zmax = math.min(math.floor(xlist[l*2]), maxp.z)
local i = (x-minp.x) * chulens + (zmin-minp.z) + 1 local i = (x-minp.x) * chulens + (zmin-minp.z) + 1
for z=zmin, zmax do for z=zmin, zmax do
-- Fill the map at these places
polygons[i] = polygon polygons[i] = polygon
i = i + 1 i = i + 1
end end
@ -123,10 +137,13 @@ local function make_polygons(minp, maxp)
polygon.dem = {dem[iA], dem[iB], dem[iC], dem[iD]} polygon.dem = {dem[iA], dem[iB], dem[iC], dem[iD]}
polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD]) polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD])
-- Now, rivers.
-- Start by finding the river width (if any) for the polygon's 4 edges.
local river_west = river_width(bounds_z[iA]) local river_west = river_width(bounds_z[iA])
local river_north = river_width(bounds_x[iA-zp]) local river_north = river_width(bounds_x[iA-zp])
local river_east = 1-river_width(bounds_z[iB]) local river_east = 1-river_width(bounds_z[iB])
local river_south = 1-river_width(bounds_x[iD-zp-1]) local river_south = 1-river_width(bounds_x[iD-zp-1])
-- Only if opposite rivers overlap (should be rare)
if river_west > river_east then if river_west > river_east then
local mean = (river_west + river_east) / 2 local mean = (river_west + river_east) / 2
river_west = mean river_west = mean
@ -139,6 +156,7 @@ local function make_polygons(minp, maxp)
end end
polygon.rivers = {river_west, river_north, river_east, river_south} polygon.rivers = {river_west, river_north, river_east, river_south}
-- Look for river corners
local around = {0,0,0,0,0,0,0,0} local around = {0,0,0,0,0,0,0,0}
if zp > 0 then if zp > 0 then
around[1] = river_width(bounds_z[iA-X]) around[1] = river_width(bounds_z[iA-X])

View File

@ -19,9 +19,14 @@ neighbours_dirs = np.array([
neighbours_pattern = neighbours_dirs > 0 neighbours_pattern = neighbours_dirs > 0
def flow_dirs_lakes(dem, random=0): def flow_dirs_lakes(dem, random=0):
"""
Calculates flow direction in D4 (4 choices) for every pixel of the DEM
Also returns an array of lake elevation
"""
(Y, X) = dem.shape (Y, X) = dem.shape
dem_margin = np.zeros((Y+2, X+2)) dem_margin = np.zeros((Y+2, X+2)) # We need a margin of one pixel at every edge, to prevent crashes when scanning the neighbour pixels on the borders
dem_margin[1:-1,1:-1] = dem dem_margin[1:-1,1:-1] = dem
if random > 0: if random > 0:
dem_margin += np.random.random(dem_margin.shape) * random dem_margin += np.random.random(dem_margin.shape) * random
@ -41,10 +46,11 @@ def flow_dirs_lakes(dem, random=0):
dem_east = dem_margin[y,X] dem_east = dem_margin[y,X]
borders.append((dem_east, dem_east, y, X)) borders.append((dem_east, dem_east, y, X))
# Make a binary heap
heapq.heapify(borders) heapq.heapify(borders)
dirs = np.zeros((Y+2, X+2), dtype='u1') dirs = np.zeros((Y+2, X+2), dtype='u1')
dirs[-2:,:] = 1 dirs[-2:,:] = 1 # Border pixels flow outside the map
dirs[:,-2:] = 2 dirs[:,-2:] = 2
dirs[ :2,:] = 3 dirs[ :2,:] = 3
dirs[:, :2] = 4 dirs[:, :2] = 4
@ -56,21 +62,26 @@ def flow_dirs_lakes(dem, random=0):
heapq.heappush(borders, (alt, altmax, y, x)) heapq.heappush(borders, (alt, altmax, y, x))
while len(borders) > 0: while len(borders) > 0:
(alt, altmax, y, x) = heapq.heappop(borders) (alt, altmax, y, x) = heapq.heappop(borders) # Take the lowest pixel in the queue
neighbours = dirs[y-1:y+2, x-1:x+2] neighbours = dirs[y-1:y+2, x-1:x+2]
empty_neighbours = (neighbours == 0) * neighbours_pattern empty_neighbours = (neighbours == 0) * neighbours_pattern # Find the neighbours whose flow direction is not yet defined
neighbours += empty_neighbours * neighbours_dirs neighbours += empty_neighbours * neighbours_dirs # They flow into the pixel being studied
lake = max(alt, altmax) lake = max(alt, altmax) # Set lake elevation to the maximal height of the downstream section.
lakes[y-1,x-1] = lake lakes[y-1,x-1] = lake
coords = np.transpose(empty_neighbours.nonzero()) coords = np.transpose(empty_neighbours.nonzero())
for (dy,dx) in coords-1: for (dy,dx) in coords-1: # Add these neighbours into the queue
add_point(y+dy, x+dx, lake) add_point(y+dy, x+dx, lake)
return dirs[1:-1,1:-1], lakes return dirs[1:-1,1:-1], lakes
def accumulate(dirs, dem=None): def accumulate(dirs, dem=None):
"""
Calculates the quantity of water that accumulates at every pixel,
following flow directions.
"""
(Y, X) = dirs.shape (Y, X) = dirs.shape
dirs_margin = np.zeros((Y+2,X+2))-1 dirs_margin = np.zeros((Y+2,X+2))-1
dirs_margin[1:-1,1:-1] = dirs dirs_margin[1:-1,1:-1] = dirs
@ -79,13 +90,13 @@ def accumulate(dirs, dem=None):
def calculate_quantity(y, x): def calculate_quantity(y, x):
if quantity[y,x] > 0: if quantity[y,x] > 0:
return quantity[y,x] return quantity[y,x]
q = 1 q = 1 # Consider that every pixel contains a water quantity of 1 by default.
neighbours = dirs_margin[y:y+3, x:x+3] neighbours = dirs_margin[y:y+3, x:x+3]
donors = neighbours == neighbours_dirs donors = neighbours == neighbours_dirs # Identify neighbours that give their water to the pixel being studied
coords = np.transpose(donors.nonzero()) coords = np.transpose(donors.nonzero())
for (dy,dx) in coords-1: for (dy,dx) in coords-1:
q += calculate_quantity(y+dy, x+dx) q += calculate_quantity(y+dy, x+dx) # Add water quantity of the donors pixels (this triggers calculation for these pixels, recursively)
quantity[y, x] = q quantity[y, x] = q
return q return q
@ -96,5 +107,9 @@ def accumulate(dirs, dem=None):
return quantity return quantity
def flow(dem): def flow(dem):
"""
Calculates flow directions and water quantity
"""
dirs, lakes = flow_dirs_lakes(dem) dirs, lakes = flow_dirs_lakes(dem)
return dirs, lakes, accumulate(dirs, dem) return dirs, lakes, accumulate(dirs, dem)

View File

@ -20,28 +20,29 @@ else:
scale = (mapsize-1) / 2 scale = (mapsize-1) / 2
n = np.zeros((mapsize, mapsize)) n = np.zeros((mapsize, mapsize))
#micronoise_depth = 0.05 # Set noise parameters
params = { params = {
"octaves" : int(np.ceil(np.log2(mapsize-1)))+1, "octaves" : int(np.ceil(np.log2(mapsize-1)))+1,
"persistence" : 0.5, "persistence" : 0.5,
"lacunarity" : 2., "lacunarity" : 2.,
} }
# Determine noise offset randomly
xbase = np.random.randint(65536) xbase = np.random.randint(65536)
ybase = np.random.randint(65536) ybase = np.random.randint(65536)
# Generate the noise
for x in range(mapsize): for x in range(mapsize):
for y in range(mapsize): for y in range(mapsize):
n[x,y] = noise.snoise2(x/scale + xbase, y/scale + ybase, **params) n[x,y] = noise.snoise2(x/scale + xbase, y/scale + ybase, **params)
#micronoise = np.random.rand(mapsize, mapsize)
#nn = np.exp(n*2) + micronoise*micronoise_depth
nn = n*mapsize/5 + mapsize/20 nn = n*mapsize/5 + mapsize/20
# Initialize landscape evolution model
print('Initializing model') print('Initializing model')
model = EvolutionModel(nn, K=1, m=0.35, d=1, sea_level=0) model = EvolutionModel(nn, K=1, m=0.35, d=1, sea_level=0)
# Run the model's processes: the order in which the processes are run is arbitrary and could be changed.
print('Flow calculation 1') print('Flow calculation 1')
model.calculate_flow() model.calculate_flow()
@ -68,12 +69,15 @@ model.calculate_flow()
print('Done') print('Done')
# Twist the grid
bx, by = bounds.make_bounds(model.dirs, model.rivers) bx, by = bounds.make_bounds(model.dirs, model.rivers)
ox, oy = bounds.twist(bx, by, bounds.get_fixed(model.dirs)) ox, oy = bounds.twist(bx, by, bounds.get_fixed(model.dirs))
# Convert offset in 8-bits
offset_x = np.clip(np.floor(ox * 256), -128, 127) offset_x = np.clip(np.floor(ox * 256), -128, 127)
offset_y = np.clip(np.floor(oy * 256), -128, 127) offset_y = np.clip(np.floor(oy * 256), -128, 127)
# Save the files
save(model.dem, 'dem', dtype='>i2') save(model.dem, 'dem', dtype='>i2')
save(model.lakes, 'lakes', dtype='>i2') save(model.lakes, 'lakes', dtype='>i2')
save(np.abs(bx), 'bounds_x', dtype='>i4') save(np.abs(bx), 'bounds_x', dtype='>i4')
@ -86,6 +90,7 @@ save(model.rivers, 'rivers', dtype='>u4')
with open('size', 'w') as sfile: with open('size', 'w') as sfile:
sfile.write('{:d}\n{:d}'.format(mapsize, mapsize)) sfile.write('{:d}\n{:d}'.format(mapsize, mapsize))
# Display the map if matplotlib is found
try: try:
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -111,7 +116,7 @@ try:
plt.pcolormesh(model.rivers, vmin=0, vmax=mapsize**2/25, cmap='Blues') plt.pcolormesh(model.rivers, vmin=0, vmax=mapsize**2/25, cmap='Blues')
plt.gca().set_aspect('equal', 'box') plt.gca().set_aspect('equal', 'box')
#plt.colorbar(orientation='horizontal') #plt.colorbar(orientation='horizontal')
plt.title('Rivers discharge') plt.title('Rivers flux')
plt.show() plt.show()
except: except:

View File

@ -34,6 +34,6 @@ plt.subplot(1,3,3)
plt.pcolormesh(np.log(rivers), vmin=0, vmax=np.log(n/25), cmap='Blues') plt.pcolormesh(np.log(rivers), vmin=0, vmax=np.log(n/25), cmap='Blues')
plt.gca().set_aspect('equal', 'box') plt.gca().set_aspect('equal', 'box')
#plt.colorbar(orientation='horizontal') #plt.colorbar(orientation='horizontal')
plt.title('Rivers discharge') plt.title('Rivers flux')
plt.show() plt.show()