mirror of
https://gitlab.com/gaelysam/mapgen_rivers.git
synced 2024-11-13 06:10:21 +01:00
185 lines
6.2 KiB
Lua
185 lines
6.2 KiB
Lua
local modpath = minetest.get_modpath(minetest.get_current_modname()) .. '/'
|
|
local worldpath = minetest.get_worldpath() .. '/'
|
|
local load_map = dofile(modpath .. 'load.lua')
|
|
|
|
local function copy_if_needed(filename)
|
|
local wfilename = worldpath..filename
|
|
local wfile = io.open(wfilename, 'r')
|
|
if wfile then
|
|
wfile:close()
|
|
return
|
|
end
|
|
local mfilename = modpath..filename
|
|
local mfile = io.open(mfilename, 'r')
|
|
local wfile = io.open(wfilename, 'w')
|
|
wfile:write(mfile:read("*all"))
|
|
mfile:close()
|
|
wfile:close()
|
|
end
|
|
|
|
copy_if_needed('size')
|
|
local sfile = io.open(worldpath..'size')
|
|
local X = tonumber(sfile:read('*l'))
|
|
local Z = tonumber(sfile:read('*l'))
|
|
sfile:close()
|
|
|
|
copy_if_needed('dem')
|
|
local dem = load_map('dem', 2, true, X*Z)
|
|
copy_if_needed('lakes')
|
|
local lakes = load_map('lakes', 2, true, X*Z)
|
|
copy_if_needed('bounds_x')
|
|
local bounds_x = load_map('bounds_x', 4, false, (X-1)*Z)
|
|
copy_if_needed('bounds_y')
|
|
local bounds_z = load_map('bounds_y', 4, false, X*(Z-1))
|
|
|
|
copy_if_needed('offset_x')
|
|
local offset_x = load_map('offset_x', 1, true, X*Z)
|
|
for k, v in ipairs(offset_x) do
|
|
offset_x[k] = (v+0.5)/256
|
|
end
|
|
|
|
copy_if_needed('offset_y')
|
|
local offset_z = load_map('offset_y', 1, true, X*Z)
|
|
for k, v in ipairs(offset_z) do
|
|
offset_z[k] = (v+0.5)/256
|
|
end
|
|
|
|
-- To index a flat array representing a 2D map
|
|
local function index(x, z)
|
|
return z*X+x+1
|
|
end
|
|
|
|
local blocksize = mapgen_rivers.blocksize
|
|
local min_catchment = mapgen_rivers.min_catchment
|
|
local max_catchment = mapgen_rivers.max_catchment
|
|
|
|
-- Width coefficients: coefficients solving
|
|
-- wfactor * min_catchment ^ wpower = 1/(2*blocksize)
|
|
-- wfactor * max_catchment ^ wpower = 1
|
|
local wpower = math.log(2*blocksize)/math.log(max_catchment/min_catchment)
|
|
local wfactor = 1 / max_catchment ^ wpower
|
|
local function river_width(flow)
|
|
flow = math.abs(flow)
|
|
if flow < min_catchment then
|
|
return 0
|
|
end
|
|
|
|
return math.min(wfactor * flow ^ wpower, 1)
|
|
end
|
|
|
|
-- On map generation, determine into which polygon every point (in 2D) will fall.
|
|
-- Also store polygon-specific data
|
|
local function make_polygons(minp, maxp)
|
|
local chulens = maxp.z - minp.z + 1
|
|
|
|
local polygons = {}
|
|
-- Determine the minimum and maximum coordinates of the polygons that could be on the chunk, knowing that they have an average size of 'blocksize' and a maximal offset of 0.5 blocksize.
|
|
local xpmin, xpmax = math.max(math.floor(minp.x/blocksize - 0.5), 0), math.min(math.ceil(maxp.x/blocksize), X-2)
|
|
local zpmin, zpmax = math.max(math.floor(minp.z/blocksize - 0.5), 0), math.min(math.ceil(maxp.z/blocksize), Z-2)
|
|
|
|
-- Iterate over the polygons
|
|
for xp = xpmin, xpmax do
|
|
for zp=zpmin, zpmax do
|
|
local iA = index(xp, zp)
|
|
local iB = index(xp+1, zp)
|
|
local iC = index(xp+1, zp+1)
|
|
local iD = index(xp, zp+1)
|
|
-- Extract the vertices of the polygon
|
|
local poly_x = {offset_x[iA]+xp, offset_x[iB]+xp+1, offset_x[iC]+xp+1, offset_x[iD]+xp}
|
|
local poly_z = {offset_z[iA]+zp, offset_z[iB]+zp, offset_z[iC]+zp+1, offset_z[iD]+zp+1}
|
|
local polygon = {x=poly_x, z=poly_z, i={iA, iB, iC, iD}}
|
|
|
|
local bounds = {} -- Will be a list of the intercepts of polygon edges for every X position (scanline algorithm)
|
|
-- Calculate the min and max X positions
|
|
local xmin = math.max(math.floor(blocksize*math.min(unpack(poly_x)))+1, minp.x)
|
|
local xmax = math.min(math.floor(blocksize*math.max(unpack(poly_x))), maxp.x)
|
|
-- And initialize the arrays
|
|
for x=xmin, xmax do
|
|
bounds[x] = {}
|
|
end
|
|
|
|
local i1 = 4
|
|
for i2=1, 4 do -- Loop on 4 edges
|
|
local x1, x2 = poly_x[i1], poly_x[i2]
|
|
-- Calculate the integer X positions over which this edge spans
|
|
local lxmin = math.floor(blocksize*math.min(x1, x2))+1
|
|
local lxmax = math.floor(blocksize*math.max(x1, x2))
|
|
if lxmin <= lxmax then -- If there is at least one position in it
|
|
local z1, z2 = poly_z[i1], poly_z[i2]
|
|
-- Calculate coefficient of the equation defining the edge: Z=aX+b
|
|
local a = (z1-z2) / (x1-x2)
|
|
local b = blocksize*(z1 - a*x1)
|
|
for x=math.max(lxmin, minp.x), math.min(lxmax, maxp.x) do
|
|
-- For every X position involved, add the intercepted Z position in the table
|
|
table.insert(bounds[x], a*x+b)
|
|
end
|
|
end
|
|
i1 = i2
|
|
end
|
|
for x=xmin, xmax do
|
|
-- Now sort the bounds list
|
|
local xlist = bounds[x]
|
|
table.sort(xlist)
|
|
local c = math.floor(#xlist/2)
|
|
for l=1, c do
|
|
-- Take pairs of Z coordinates: all positions between them belong to the polygon.
|
|
local zmin = math.max(math.floor(xlist[l*2-1])+1, minp.z)
|
|
local zmax = math.min(math.floor(xlist[l*2]), maxp.z)
|
|
local i = (x-minp.x) * chulens + (zmin-minp.z) + 1
|
|
for z=zmin, zmax do
|
|
-- Fill the map at these places
|
|
polygons[i] = polygon
|
|
i = i + 1
|
|
end
|
|
end
|
|
end
|
|
|
|
polygon.dem = {dem[iA], dem[iB], dem[iC], dem[iD]}
|
|
polygon.lake = math.min(lakes[iA], lakes[iB], lakes[iC], lakes[iD])
|
|
|
|
-- Now, rivers.
|
|
-- Start by finding the river width (if any) for the polygon's 4 edges.
|
|
local river_west = river_width(bounds_z[iA])
|
|
local river_north = river_width(bounds_x[iA-zp])
|
|
local river_east = 1-river_width(bounds_z[iB])
|
|
local river_south = 1-river_width(bounds_x[iD-zp-1])
|
|
-- Only if opposite rivers overlap (should be rare)
|
|
if river_west > river_east then
|
|
local mean = (river_west + river_east) / 2
|
|
river_west = mean
|
|
river_east = mean
|
|
end
|
|
if river_north > river_south then
|
|
local mean = (river_north + river_south) / 2
|
|
river_north = mean
|
|
river_south = mean
|
|
end
|
|
polygon.rivers = {river_west, river_north, river_east, river_south}
|
|
|
|
-- Look for river corners
|
|
local around = {0,0,0,0,0,0,0,0}
|
|
if zp > 0 then
|
|
around[1] = river_width(bounds_z[iA-X])
|
|
around[2] = river_width(bounds_z[iB-X])
|
|
end
|
|
if xp < X-2 then
|
|
around[3] = river_width(bounds_x[iB-zp])
|
|
around[4] = river_width(bounds_x[iC-zp-1])
|
|
end
|
|
if zp < Z-2 then
|
|
around[5] = river_width(bounds_z[iC])
|
|
around[6] = river_width(bounds_z[iD])
|
|
end
|
|
if xp > 0 then
|
|
around[7] = river_width(bounds_x[iD-zp-2])
|
|
around[8] = river_width(bounds_x[iA-zp-1])
|
|
end
|
|
polygon.river_corners = {math.max(around[8], around[1]), math.max(around[2], around[3]), math.max(around[4], around[5]), math.max(around[6], around[7])}
|
|
end
|
|
end
|
|
|
|
return polygons
|
|
end
|
|
|
|
return make_polygons
|