2 Commits

Author SHA1 Message Date
b1f4437a91 Added settings for margin, and documented in settingtypes.txt 2022-01-03 16:39:02 +01:00
a00c1cbd39 Added margin with a settable width near grid border
Elevation gets closer to -50 when approaching the border
2022-01-03 16:39:02 +01:00
13 changed files with 231 additions and 274 deletions

View File

@ -1,18 +0,0 @@
CHANGELOG
=========
## `v1.0.2` (2022-01-10)
- Use builtin logging system and appropriate loglevels
- Skip empty chunks, when generating high above ground (~20% speedup)
- Minor optimizations (turning global variables to local...)
## `v1.0.1` (2021-09-14)
- Automatically switch to `singlenode` mapgen at init time
## `v1.0` (2021-08-01)
- Rewritten pregen code (terrainlib) in pure Lua
- Optimized grid loading
- Load grid nodes on request by default
- Changed river width settings
- Added map size in settings
- Added logs

View File

@ -1,5 +1,5 @@
# Map Generator with Rivers # Map Generator with Rivers
`mapgen_rivers v1.0.2` by Gaël de Sailly. `mapgen_rivers v1.0.1` by Gaël de Sailly.
Semi-procedural map generator for Minetest 5.x. It aims to create realistic and nice-looking landscapes for the game, focused on river networks. It is based on algorithms modelling water flow and river erosion at a broad scale, similar to some used by researchers in Earth Sciences. It is taking some inspiration from [Fastscape](https://github.com/fastscape-lem/fastscape). Semi-procedural map generator for Minetest 5.x. It aims to create realistic and nice-looking landscapes for the game, focused on river networks. It is based on algorithms modelling water flow and river erosion at a broad scale, similar to some used by researchers in Earth Sciences. It is taking some inspiration from [Fastscape](https://github.com/fastscape-lem/fastscape).
@ -13,11 +13,10 @@ It used to be composed of a Python script doing pre-generation, and a Lua mod re
License: GNU LGPLv3.0 License: GNU LGPLv3.0
Code: Gaël de Sailly Code: Gaël de Sailly
Flow routing algorithm concept (in `terrainlib/rivermapper.lua`): Cordonnier, G., Bovy, B., & Braun, J. (2019). A versatile, linear complexity algorithm for flow routing in topographies with depressions. Earth Surface Dynamics, 7(2), 549-562. Flow routing algorithm concept (in `terrainlib/rivermapper.lua`): Cordonnier, G., Bovy, B., & Braun, J. (2019). A versatile, linear complexity algorithm for flow routing in topographies with depressions. Earth Surface Dynamics, 7(2), 549-562.
# Requirements # Requirements
No required dependency, but [`biomegen`](https://gitlab.com/gaelysam/biomegen) recommended (provides biome system). Mod dependencies: `default` required, and [`biomegen`](https://github.com/Gael-de-Sailly/biomegen) optional (provides biome system).
# Installation # Installation
This mod should be placed in the `mods/` directory of Minetest like any other mod. This mod should be placed in the `mods/` directory of Minetest like any other mod.

View File

@ -6,7 +6,7 @@ local transform_quadri = dofile(modpath .. 'geometry.lua')
local sea_level = mapgen_rivers.settings.sea_level local sea_level = mapgen_rivers.settings.sea_level
local riverbed_slope = mapgen_rivers.settings.riverbed_slope * mapgen_rivers.settings.blocksize local riverbed_slope = mapgen_rivers.settings.riverbed_slope * mapgen_rivers.settings.blocksize
local MAP_BOTTOM = -31000 local out_elev = mapgen_rivers.settings.margin_elev
-- Localize for performance -- Localize for performance
local floor, min, max = math.floor, math.min, math.max local floor, min, max = math.floor, math.min, math.max
@ -46,57 +46,50 @@ local function heightmaps(minp, maxp)
-- = 0: on riverbank -- = 0: on riverbank
-- > 0: inside river -- > 0: inside river
local depth_factors = { local depth_factors = {
r_west - xf , -- West edge (1) r_west - xf,
r_north - zf , -- North edge (2) r_north - zf,
r_east - (1-xf), -- East edge (3) xf - r_east,
r_south - (1-zf), -- South edge (4) zf - r_south,
c_NW - xf - zf , -- North-West corner (5) c_NW-xf-zf,
c_NE - (1-xf) - zf , -- North-East corner (6) xf-zf-c_NE,
c_SE - (1-xf) - (1-zf), -- South-East corner (7) xf+zf-c_SE,
c_SW - xf - (1-zf), -- South-West corner (8) zf-xf-c_SW,
} }
-- Find the maximal depth factor, which determines to which of the 8 river sections (4 edges + 4 corners) the current point belongs. -- Find the maximal depth factor and determine to which river it belongs
-- If imax is still at 0, it means that we are not in a river. local depth_factor_max = 0
local dpmax = 0
local imax = 0 local imax = 0
for i=1, 8 do for i=1, 8 do
if depth_factors[i] > dpmax then if depth_factors[i] >= depth_factor_max then
dpmax = depth_factors[i] depth_factor_max = depth_factors[i]
imax = i imax = i
end end
end end
-- Transform the coordinates to have xfc and zfc = 0 or 1 in rivers (to avoid rivers having lateral slope and to accomodate the riverbanks smoothly) -- Transform the coordinates to have xf and zf = 0 or 1 in rivers (to avoid rivers having lateral slope and to accomodate the surrounding smoothly)
local xfc, zfc if imax == 0 then
-- xfc: local x0 = max(r_west, c_NW-zf, zf-c_SW)
if imax == 0 or imax == 2 or imax == 4 then -- river segment does not constrain X coordinate, so accomodate xf in function of other river sections local x1 = min(r_east, c_NE+zf, c_SE-zf)
local x0 = max(r_west-dpmax, c_NW-zf-dpmax, c_SW-(1-zf)-dpmax, 0) -- new xf will be bounded to 0 by western riverbank local z0 = max(r_north, c_NW-xf, xf-c_NE)
local x1 = 1-max(r_east-dpmax, c_NE-zf-dpmax, c_SE-(1-zf)-dpmax, 0) -- and bounded to 1 by eastern riverbank local z1 = min(r_south, c_SW+xf, c_SE-xf)
if x0 >= x1 then xf = (xf-x0) / (x1-x0)
xfc = 0.5 zf = (zf-z0) / (z1-z0)
else elseif imax == 1 then
xfc = (xf-x0) / (x1-x0) xf = 0
end elseif imax == 2 then
elseif imax == 1 or imax == 5 or imax == 8 then -- river at the western side of the polygon zf = 0
xfc = 0 elseif imax == 3 then
else -- 3, 6, 7 : river at the eastern side of the polygon xf = 1
xfc = 1 elseif imax == 4 then
end zf = 1
elseif imax == 5 then
-- Same for zfc: xf, zf = 0, 0
if imax == 0 or imax == 1 or imax == 3 then -- river segment does not constrain Z coordinate, so accomodate zf in function of other river sections elseif imax == 6 then
local z0 = max(r_north-dpmax, c_NW-xf-dpmax, c_NE-(1-xf)-dpmax, 0) -- new zf will be bounded to 0 by northern riverbank xf, zf = 1, 0
local z1 = 1-max(r_south-dpmax, c_SW-xf-dpmax, c_SE-(1-xf)-dpmax, 0) -- and bounded to 1 by southern riverbank elseif imax == 7 then
if z0 >= z1 then xf, zf = 1, 1
zfc = 0.5 elseif imax == 8 then
else xf, zf = 0, 1
zfc = (zf-z0) / (z1-z0)
end
elseif imax == 2 or imax == 5 or imax == 6 then -- river at the northern side of the polygon
zfc = 0
else -- 4, 7, 8 : river at the southern side of the polygon
zfc = 1
end end
-- Determine elevation by interpolation -- Determine elevation by interpolation
@ -106,12 +99,12 @@ local function heightmaps(minp, maxp)
vdem[2], vdem[2],
vdem[3], vdem[3],
vdem[4], vdem[4],
xfc, zfc xf, zf
)) ))
-- Spatial gradient of the interpolation -- Spatial gradient of the interpolation
local slope_x = zfc*(vdem[3]-vdem[4]) + (1-zfc)*(vdem[2]-vdem[1]) < 0 local slope_x = zf*(vdem[3]-vdem[4]) + (1-zf)*(vdem[2]-vdem[1]) < 0
local slope_z = xfc*(vdem[3]-vdem[2]) + (1-xfc)*(vdem[4]-vdem[1]) < 0 local slope_z = xf*(vdem[3]-vdem[2]) + (1-xf)*(vdem[4]-vdem[1]) < 0
local lake_id = 0 local lake_id = 0
if slope_x then if slope_x then
if slope_z then if slope_z then
@ -128,15 +121,15 @@ local function heightmaps(minp, maxp)
end end
local lake_height = max(floor(poly.lake[lake_id]), terrain_height) local lake_height = max(floor(poly.lake[lake_id]), terrain_height)
if imax > 0 and dpmax > 0 then if imax > 0 and depth_factor_max > 0 then
terrain_height = min(max(lake_height, sea_level) - floor(1+dpmax*riverbed_slope), terrain_height) terrain_height = min(max(lake_height, sea_level) - floor(1+depth_factor_max*riverbed_slope), terrain_height)
end end
terrain_height_map[i] = terrain_height terrain_height_map[i] = terrain_height
lake_height_map[i] = lake_height lake_height_map[i] = lake_height
else else
terrain_height_map[i] = MAP_BOTTOM terrain_height_map[i] = out_elev
lake_height_map[i] = MAP_BOTTOM lake_height_map[i] = out_elev
end end
i = i + 1 i = i + 1
end end

View File

@ -16,7 +16,7 @@ local elevation_chill = mapgen_rivers.settings.elevation_chill
local use_distort = mapgen_rivers.settings.distort local use_distort = mapgen_rivers.settings.distort
local use_biomes = mapgen_rivers.settings.biomes local use_biomes = mapgen_rivers.settings.biomes
local use_biomegen_mod = use_biomes and minetest.global_exists('biomegen') local use_biomegen_mod = use_biomes and minetest.global_exists('biomegen')
use_biomes = use_biomes and minetest.global_exists('default') and not use_biomegen_mod use_biomes = use_biomes and not use_biomegen_mod
if use_biomegen_mod then if use_biomegen_mod then
biomegen.set_elevation_chill(elevation_chill) biomegen.set_elevation_chill(elevation_chill)
@ -147,19 +147,15 @@ local function generate(minp, maxp, seed)
end end
end end
local c_stone = minetest.get_content_id("mapgen_stone") local c_stone = minetest.get_content_id("default:stone")
local c_water = minetest.get_content_id("mapgen_water_source") local c_dirt = minetest.get_content_id("default:dirt")
local c_rwater = minetest.get_content_id("mapgen_river_water_source") local c_lawn = minetest.get_content_id("default:dirt_with_grass")
local c_dirtsnow = minetest.get_content_id("default:dirt_with_snow")
local c_dirt, c_lawn, c_dirtsnow, c_snow, c_sand, c_ice local c_snow = minetest.get_content_id("default:snowblock")
if use_biomes then local c_sand = minetest.get_content_id("default:sand")
c_dirt = minetest.get_content_id("default:dirt") local c_water = minetest.get_content_id("default:water_source")
c_lawn = minetest.get_content_id("default:dirt_with_grass") local c_rwater = minetest.get_content_id("default:river_water_source")
c_dirtsnow = minetest.get_content_id("default:dirt_with_snow") local c_ice = minetest.get_content_id("default:ice")
c_snow = minetest.get_content_id("default:snowblock")
c_sand = minetest.get_content_id("default:sand")
c_ice = minetest.get_content_id("default:ice")
end
local vm, emin, emax = minetest.get_mapgen_object("voxelmanip") local vm, emin, emax = minetest.get_mapgen_object("voxelmanip")
vm:get_data(data) vm:get_data(data)

View File

@ -1,3 +1,4 @@
name = mapgen_rivers name = mapgen_rivers
title = Map generator with realistic rivers title = Map generator with realistic rivers
optional_depends = biomegen, default depends = default
optional_depends = biomegen

View File

@ -236,15 +236,15 @@ local function make_polygons(minp, maxp)
end end
end end
polygon.river_corners = {riverA, riverB, riverC, riverD} polygon.river_corners = {riverA, 1-riverB, 2-riverC, 1-riverD}
-- Flow directions -- Flow directions
local dirA, dirB, dirC, dirD = dirs[iA], dirs[iB], dirs[iC], dirs[iD] local dirA, dirB, dirC, dirD = dirs[iA], dirs[iB], dirs[iC], dirs[iD]
-- Determine the river flux on the edges, by testing dirs values -- Determine the river flux on the edges, by testing dirs values
local river_west = (dirA==1 and riverA or 0) + (dirD==3 and riverD or 0) local river_west = (dirA==1 and riverA or 0) + (dirD==3 and riverD or 0)
local river_north = (dirA==2 and riverA or 0) + (dirB==4 and riverB or 0) local river_north = (dirA==2 and riverA or 0) + (dirB==4 and riverB or 0)
local river_east = (dirB==1 and riverB or 0) + (dirC==3 and riverC or 0) local river_east = 1 - (dirB==1 and riverB or 0) - (dirC==3 and riverC or 0)
local river_south = (dirD==2 and riverD or 0) + (dirC==4 and riverC or 0) local river_south = 1 - (dirD==2 and riverD or 0) - (dirC==4 and riverC or 0)
polygon.rivers = {river_west, river_north, river_east, river_south} polygon.rivers = {river_west, river_north, river_east, river_south}
end end

View File

@ -13,6 +13,38 @@ local time_step = mapgen_rivers.settings.evol_time_step
local niter = math.ceil(time/time_step) local niter = math.ceil(time/time_step)
time_step = time / niter time_step = time / niter
local use_margin = mapgen_rivers.settings.margin
local margin_width = mapgen_rivers.settings.margin_width / blocksize
local margin_elev = mapgen_rivers.settings.margin_elev
local function margin(dem, width, elev)
local X, Y = dem.X, dem.Y
for i=1, width do
local c1 = ((i-1)/width) ^ 0.5
local c2 = (1-c1) * elev
local index = (i-1)*X + 1
for x=1, X do
dem[index] = dem[index] * c1 + c2
index = index + 1
end
index = i
for y=1, Y do
dem[index] = dem[index] * c1 + c2
index = index + X
end
index = X*(Y-i) + 1
for x=1, X do
dem[index] = dem[index] * c1 + c2
index = index + 1
end
index = X-i + 1
for y=1, Y do
dem[index] = dem[index] * c1 + c2
index = index + X
end
end
end
local function pregenerate(keep_loaded) local function pregenerate(keep_loaded)
local grid = mapgen_rivers.grid local grid = mapgen_rivers.grid
local size = grid.size local size = grid.size
@ -26,6 +58,10 @@ local function pregenerate(keep_loaded)
dem.X = size.x dem.X = size.x
dem.Y = size.y dem.Y = size.y
if use_margin then
margin(dem, margin_width, margin_elev)
end
local model = EvolutionModel(evol_params) local model = EvolutionModel(evol_params)
model.dem = dem model.dem = dem
local ref_dem = model:define_isostasy(dem) local ref_dem = model:define_isostasy(dem)
@ -41,6 +77,9 @@ local function pregenerate(keep_loaded)
if i < niter then if i < niter then
if tectonic_step ~= 0 then if tectonic_step ~= 0 then
nobj_base:get_3d_map_flat({x=0, y=tectonic_step*i, z=0}, ref_dem) nobj_base:get_3d_map_flat({x=0, y=tectonic_step*i, z=0}, ref_dem)
if use_margin then
margin(ref_dem, margin_width, margin_elev)
end
end end
model:isostasy() model:isostasy()
end end

View File

@ -1,7 +1,7 @@
local mtsettings = minetest.settings local mtsettings = minetest.settings
local mgrsettings = Settings(minetest.get_worldpath() .. '/mapgen_rivers.conf') local mgrsettings = Settings(minetest.get_worldpath() .. '/mapgen_rivers.conf')
mapgen_rivers.version = "1.0.2" mapgen_rivers.version = "1.0.1"
local previous_version_mt = mtsettings:get("mapgen_rivers_version") or "0.0" local previous_version_mt = mtsettings:get("mapgen_rivers_version") or "0.0"
local previous_version_mgr = mgrsettings:get("version") or "0.0" local previous_version_mgr = mgrsettings:get("version") or "0.0"
@ -74,6 +74,9 @@ mapgen_rivers.settings = {
grid_x_size = def_setting('grid_x_size', 'number', 1000), grid_x_size = def_setting('grid_x_size', 'number', 1000),
grid_z_size = def_setting('grid_z_size', 'number', 1000), grid_z_size = def_setting('grid_z_size', 'number', 1000),
margin = def_setting('margin', 'bool', true),
margin_width = def_setting('margin_width', 'number', 2000),
margin_elev = def_setting('margin_elev', 'number', -200),
evol_params = { evol_params = {
K = def_setting('river_erosion_coef', 'number', 0.5), K = def_setting('river_erosion_coef', 'number', 0.5),
m = def_setting('river_erosion_power', 'number', 0.4), m = def_setting('river_erosion_power', 'number', 0.4),

View File

@ -17,6 +17,16 @@ mapgen_rivers_grid_x_size (Grid X size) int 1000 50 5000
# Actual size of the map is grid_z_size * blocksize # Actual size of the map is grid_z_size * blocksize
mapgen_rivers_grid_z_size (Grid Z size) int 1000 50 5000 mapgen_rivers_grid_z_size (Grid Z size) int 1000 50 5000
# If margin is enabled, elevation becomes closer to a fixed value when approaching
# the edges of the map.
mapgen_rivers_margin (Margin) bool true
# Width of the transition at map borders, in nodes
mapgen_rivers_margin_width (Margin width) float 2000.0 0.0 15000.0
# Elevation toward which to converge at map borders
mapgen_rivers_margin_elev (Margin elevation) float -200.0 -31000.0 31000.0
# Minimal catchment area for a river to be drawn, in square nodes # Minimal catchment area for a river to be drawn, in square nodes
# Lower value means bigger river density # Lower value means bigger river density
mapgen_rivers_min_catchment (Minimal catchment area) float 3600.0 100.0 1000000.0 mapgen_rivers_min_catchment (Minimal catchment area) float 3600.0 100.0 1000000.0

View File

@ -1,13 +1,7 @@
-- erosion.lua -- erosion.lua
-- This is the main file of terrainlib_lua. It registers the EvolutionModel object and some of the
local function erode(model, time) local function erode(model, time)
-- Apply river erosion on the model --local tinsert = table.insert
-- Erosion model is based on the simplified version of the stream-power law Ey = K×A^m×S
-- where Ey is the vertical erosion speed, A catchment area of the river, S slope along the river, m and K local constants.
-- It is equivalent to considering a horizontal erosion wave travelling at Ex = K×A^m, and this latter approach allows much greather time steps so it is used here.
-- For each point, instead of moving upstream and see what point the erosion wave would reach, we move downstream and see from which point the erosion wave would reach the given point, then we can set the elevation.
local mmin, mmax = math.min, math.max local mmin, mmax = math.min, math.max
local dem = model.dem local dem = model.dem
local dirs = model.dirs local dirs = model.dirs
@ -28,9 +22,9 @@ local function erode(model, time)
if scalars then if scalars then
for i=1, X*Y do for i=1, X*Y do
local etime = 1 / (K*rivers[i]^m) -- Inverse of erosion speed (Ex); time needed for the erosion wave to move through the river section. local etime = 1 / (K*rivers[i]^m)
erosion_time[i] = etime erosion_time[i] = etime
lakes[i] = mmax(lakes[i], dem[i], sea_level) -- Use lake/sea surface if higher than ground level, because rivers can not erode below. lakes[i] = mmax(lakes[i], dem[i], sea_level)
end end
else else
for i=1, X*Y do for i=1, X*Y do
@ -45,12 +39,10 @@ local function erode(model, time)
local remaining = time local remaining = time
local new_elev local new_elev
while true do while true do
-- Explore downstream until we find the point 'iw' from which the erosion wave will reach 'i'
local inext = iw local inext = iw
local d = dirs[iw] local d = dirs[iw]
-- Follow the river downstream (move 'iw') if d == 0 then
if d == 0 then -- If no flow direction, we reach the border of the map: set elevation to the latest node's elev and abort.
new_elev = lakes[iw] new_elev = lakes[iw]
break break
elseif d == 1 then elseif d == 1 then
@ -64,13 +56,13 @@ local function erode(model, time)
end end
local etime = erosion_time[iw] local etime = erosion_time[iw]
if remaining <= etime then -- We have found the node from which the erosion wave will take 'time' to arrive to 'i'. if remaining <= etime then
local c = remaining / etime local c = remaining / etime
new_elev = (1-c) * lakes[iw] + c * lakes[inext] -- Interpolate linearly between the two nodes new_elev = (1-c) * lakes[iw] + c * lakes[inext]
break break
end end
remaining = remaining - etime -- If we still don't reach the target time, decrement time and move to next point. remaining = remaining - etime
iw = inext iw = inext
end end
@ -79,55 +71,50 @@ local function erode(model, time)
end end
local function diffuse(model, time) local function diffuse(model, time)
-- Apply diffusion using finite differences methods local mmax = math.max
-- Adapted for small radiuses local dem = model.dem
local mmax = math.max local X, Y = dem.X, dem.Y
local dem = model.dem local d = model.params.d
local X, Y = dem.X, dem.Y local dmax = d
local d = model.params.d if type(d) == "table" then
-- 'd' is equal to 4 times the diffusion coefficient dmax = -math.huge
local dmax = d for i=1, X*Y do
if type(d) == "table" then dmax = mmax(dmax, d[i])
dmax = -math.huge end
for i=1, X*Y do end
dmax = mmax(dmax, d[i])
end
end
local diff = dmax * time local diff = dmax * time
-- diff should never exceed 1 per iteration. local niter = math.floor(diff) + 1
-- If needed, we will divide the process in enough iterations so that 'ddiff' is below 1. local ddiff = diff / niter
local niter = math.floor(diff) + 1
local ddiff = diff / niter
local temp = {} local temp = {}
for n=1, niter do for n=1, niter do
local i = 1 local i = 1
for y=1, Y do for y=1, Y do
local iN = (y==1) and 0 or -X local iN = (y==1) and 0 or -X
local iS = (y==Y) and 0 or X local iS = (y==Y) and 0 or X
for x=1, X do for x=1, X do
local iW = (x==1) and 0 or -1 local iW = (x==1) and 0 or -1
local iE = (x==X) and 0 or 1 local iE = (x==X) and 0 or 1
-- Laplacian Δdem × 1/4 temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i]
temp[i] = (dem[i+iN]+dem[i+iE]+dem[i+iS]+dem[i+iW])*0.25 - dem[i] i = i + 1
i = i + 1 end
end end
end
for i=1, X*Y do for i=1, X*Y do
dem[i] = dem[i] + temp[i]*ddiff dem[i] = dem[i] + temp[i]*ddiff
end end
end end
-- TODO Test this
end end
local modpath = "" local modpath = ""
if minetest then if minetest then
if minetest.global_exists('mapgen_rivers') then if minetest.global_exists('mapgen_rivers') then
modpath = mapgen_rivers.modpath .. "terrainlib_lua/" modpath = mapgen_rivers.modpath .. "terrainlib_lua/"
else else
modpath = minetest.get_modpath(minetest.get_current_modname()) .. "terrainlib_lua/" modpath = minetest.get_modpath(minetest.get_current_modname()) .. "terrainlib_lua/"
end end
end end
local rivermapper = dofile(modpath .. "rivermapper.lua") local rivermapper = dofile(modpath .. "rivermapper.lua")
@ -139,7 +126,6 @@ local function flow(model)
end end
local function uplift(model, time) local function uplift(model, time)
-- Raises the terrain according to uplift rate (model.params.uplift)
local dem = model.dem local dem = model.dem
local X, Y = dem.X, dem.Y local X, Y = dem.X, dem.Y
local uplift_rate = model.params.uplift local uplift_rate = model.params.uplift
@ -156,7 +142,6 @@ local function uplift(model, time)
end end
local function noise(model, time) local function noise(model, time)
-- Adds noise to the terrain according to noise depth (model.params.noise)
local random = math.random local random = math.random
local dem = model.dem local dem = model.dem
local noise_depth = model.params.noise * 2 * time local noise_depth = model.params.noise * 2 * time
@ -166,43 +151,35 @@ local function noise(model, time)
end end
end end
-- Isostasy
-- This is the geological phenomenon that makes the lithosphere "float" over the underlying layers.
-- One of the key implications is that when a very large mass is removed from the ground, the lithosphere reacts by moving upward. This compensation only occurs at large scale (as the lithosphere is not flexible enough for small scale adjustments) so the implementation is using a very large-window Gaussian blur of the elevation array.
-- This implementation is quite simplistic, it does not do a mass balance of the lithosphere as this would introduce too many parameters. Instead, it defines a reference equilibrium elevation, and the ground will react toward this elevation (at the scale of the gaussian window).
-- A change in reference isostasy during the run can also be used to simulate tectonic forcing, like making a new mountain range appear.
local function define_isostasy(model, ref, link) local function define_isostasy(model, ref, link)
ref = ref or model.dem ref = ref or model.dem
if link then if link then
model.isostasy_ref = ref model.isostasy_ref = ref
return return
end end
local X, Y = ref.X, ref.Y local X, Y = ref.X, ref.Y
local ref2 = model.isostasy_ref or {X=X, Y=Y} local ref2 = model.isostasy_ref or {X=X, Y=Y}
model.isostasy_ref = ref2 model.isostasy_ref = ref2
for i=1, X*Y do for i=1, X*Y do
ref2[i] = ref[i] ref2[i] = ref[i]
end end
return ref2 return ref2
end end
-- Apply isostasy
local function isostasy(model) local function isostasy(model)
local dem = model.dem local dem = model.dem
local X, Y = dem.X, dem.Y local X, Y = dem.X, dem.Y
local temp = {X=X, Y=Y} local temp = {X=X, Y=Y}
local ref = model.isostasy_ref local ref = model.isostasy_ref
for i=1, X*Y do for i=1, X*Y do
temp[i] = ref[i] - dem[i] -- Compute the difference between the ground level and the target level temp[i] = ref[i] - dem[i]
end end
-- Blur the difference map using Gaussian blur
gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4) gaussian.gaussian_blur_approx(temp, model.params.compensation_radius, 4)
for i=1, X*Y do for i=1, X*Y do
dem[i] = dem[i] + temp[i] -- Apply the difference dem[i] = dem[i] + temp[i]
end end
end end

View File

@ -71,6 +71,20 @@ local function box_blur_2d(map1, size, map2)
return map1 return map1
end end
--[[local function gaussian_blur(map, std, tail)
local exp = math.exp
local kernel_mid = math.ceil(std*tail) + 1
local kernel_size = kernel_mid * 2 - 1
local kernel = {}
local cst1 = 1/(std*(2*math.pi)^0.5)
local cst2 = -1/(2*std^2)
for i=1, kernel_size do
kernel[i] = cst1 * exp((i-kernel_mid)^2 * cst2)
end
]]
local function gaussian_blur_approx(map, sigma, n, map2) local function gaussian_blur_approx(map, sigma, n, map2)
map2 = map2 or {} map2 = map2 or {}
local sizes = get_box_size(sigma, n) local sizes = get_box_size(sigma, n)

View File

@ -9,26 +9,24 @@
-- --
-- Big thanks to them for releasing this paper under a free license ! :) -- Big thanks to them for releasing this paper under a free license ! :)
-- The algorithm here makes use of most of the paper's concepts, including the Planar Borůvka algorithm. -- The algorithm here makes use of most of the paper's concepts, including the Planar Boruvka algorithm.
-- Only flow_local and accumulate_flow are custom algorithms. -- Only flow_local and accumulate_flow are custom algorithms.
local function flow_local_semirandom(plist) local function flow_local_semirandom(plist)
-- Determines how water should flow at 1 node scale.
-- The straightforward approach would be "Water will flow to the lowest of the 4 neighbours", but here water flows to one of the lower neighbours, chosen randomly, but probability depends on height difference.
-- This makes rivers better follow the curvature of the topography at large scale, and be less biased by pure N/E/S/W directions.
-- 'plist': array of downward height differences (0 if upward)
local sum = 0 local sum = 0
for i=1, #plist do for i=1, #plist do
sum = sum + plist[i] -- Sum of probabilities sum = sum + plist[i]
end end
--for _, p in ipairs(plist) do
--sum = sum + p
--end
if sum == 0 then if sum == 0 then
return 0 return 0
end end
local r = math.random() * sum local r = math.random() * sum
for i=1, #plist do for i=1, #plist do
local p = plist[i] local p = plist[i]
--for i, p in ipairs(plist) do
if r < p then if r < p then
return i return i
end end
@ -37,14 +35,11 @@ local function flow_local_semirandom(plist)
return 0 return 0
end end
-- Maybe implement more flow methods in the future?
local flow_methods = { local flow_methods = {
semirandom = flow_local_semirandom, semirandom = flow_local_semirandom,
} }
-- Applies all steps of the flow routing, to calculate flow direction for every node, and lake surface elevation. local function flow_routing(dem, dirs, lakes, method)
-- It's quite a hard piece of code, but we will go step by step and explain what's going on, so stay with me and... let's goooooooo!
local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are optional tables to reuse for memory optimization, they may contain any data.
method = method or 'semirandom' method = method or 'semirandom'
local flow_local = flow_methods[method] or flow_local_semirandom local flow_local = flow_methods[method] or flow_local_semirandom
@ -52,6 +47,7 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
lakes = lakes or {} lakes = lakes or {}
-- Localize for performance -- Localize for performance
--local tinsert = table.insert
local tremove = table.remove local tremove = table.remove
local mmax = math.max local mmax = math.max
@ -66,15 +62,11 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
dirs2[i] = 0 dirs2[i] = 0
end end
----------------------------------------
-- STEP 1: Find local flow directions --
----------------------------------------
-- Use the local flow function and fill the flow direction tables
local singular = {} local singular = {}
for y=1, Y do for y=1, Y do
for x=1, X do for x=1, X do
local zi = dem[i] local zi = dem[i]
local plist = { -- Get the height difference of the 4 neighbours (and 0 if uphill) local plist = {
y<Y and mmax(zi-dem[i+X], 0) or 0, -- Southward y<Y and mmax(zi-dem[i+X], 0) or 0, -- Southward
x<X and mmax(zi-dem[i+1], 0) or 0, -- Eastward x<X and mmax(zi-dem[i+1], 0) or 0, -- Eastward
y>1 and mmax(zi-dem[i-X], 0) or 0, -- Northward y>1 and mmax(zi-dem[i-X], 0) or 0, -- Northward
@ -82,10 +74,8 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
} }
local d = flow_local(plist) local d = flow_local(plist)
-- 'dirs': Direction toward which water flow
-- 'dirs2': Directions from which water comes
dirs[i] = d dirs[i] = d
if d == 0 then -- If water can't flow from this node, add it to the list of singular nodes that will be resolved later if d == 0 then
singular[#singular+1] = i singular[#singular+1] = i
elseif d == 1 then elseif d == 1 then
dirs2[i+X] = dirs2[i+X] + 1 dirs2[i+X] = dirs2[i+X] + 1
@ -100,39 +90,30 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
end end
end end
-------------------------------------- -- Compute basins and links
-- STEP 2: Compute basins and links --
--------------------------------------
-- Now water can flow until it reaches a singular node (which is in most cases the bottom of a depression)
-- We will calculate the drainage basin of every singular node (all the nodes from which the water will flow in this singular node, directly or indirectly), make an adjacency list of basins, and find the lowest pass between each pair of adjacent basins (they are potential lake outlets)
local nbasins = #singular local nbasins = #singular
local basin_id = {} local basin_id = {}
local links = {} local links = {}
local basin_links local basin_links
-- Function to analyse a link between two nodes
local function add_link(i1, i2, b1, isY) local function add_link(i1, i2, b1, isY)
-- i1, i2: coordinates of two nodes
-- b1: basin that contains i1
-- isY: whether the link is in Y direction
local b2 local b2
-- Note that basin number #0 represents the outside of the map; or if the coordinate is inside the map, means that the basin number is uninitialized. if i2 == 0 then
if i2 == 0 then -- If outside the map
b2 = 0 b2 = 0
else else
b2 = basin_id[i2] b2 = basin_id[i2]
if b2 == 0 then -- If basin of i2 is not already computed, skip if b2 == 0 then
return return
end end
end end
if b2 ~= b1 then -- If these two nodes don't belong to the same basin, we have found a link between two adjacent basins if b2 ~= b1 then
local elev = i2 == 0 and dem[i1] or mmax(dem[i1], dem[i2]) -- Elevation of the highest of the two sides of the link (or only i1 if b2 is map outside) local elev = i2 == 0 and dem[i1] or mmax(dem[i1], dem[i2])
local l2 = basin_links[b2] local l2 = basin_links[b2]
if not l2 then if not l2 then
l2 = {} l2 = {}
basin_links[b2] = l2 basin_links[b2] = l2
end end
if not l2.elev or l2.elev > elev then -- If this link is lower than the lowest registered link between these two basins, register it as the new lowest pass if not l2.elev or l2.elev > elev then
l2.elev = elev l2.elev = elev
l2.i = mmax(i1,i2) l2.i = mmax(i1,i2)
l2.is_y = isY l2.is_y = isY
@ -145,48 +126,51 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
for i=1, X*Y do for i=1, X*Y do
basin_id[i] = 0 basin_id[i] = 0
end end
--for ib, s in ipairs(singular) do
for ib=1, nbasins do for ib=1, nbasins do
-- Here we will recursively search upstream from the singular node to determine its drainage basin --local s = singular[ib]
local queue = {singular[ib]} -- Start with the singular node, then this queue will be filled with water donors neighbours local queue = {singular[ib]}
basin_links = {} basin_links = {}
links[#links+1] = basin_links links[#links+1] = basin_links
--tinsert(links, basin_links)
while #queue > 0 do while #queue > 0 do
local i = tremove(queue) local i = tremove(queue)
basin_id[i] = ib basin_id[i] = ib
local d = dirs2[i] -- Get the directions water is coming from local d = dirs2[i]
-- Iterate through the 4 directions if d >= 8 then -- River coming from East
if d >= 8 then -- River coming from the East
d = d - 8 d = d - 8
queue[#queue+1] = i+1 queue[#queue+1] = i+1
-- If no river is coming from the East, we might be at the limit of two basins, thus we need to test adjacency. --tinsert(queue, i+X)
elseif i%X > 0 then elseif i%X > 0 then
add_link(i, i+1, ib, false) add_link(i, i+1, ib, false)
else -- If the eastern neighbour is outside the map else
add_link(i, 0, ib, false) add_link(i, 0, ib, false)
end end
if d >= 4 then -- River coming from the South if d >= 4 then -- River coming from South
d = d - 4 d = d - 4
queue[#queue+1] = i+X queue[#queue+1] = i+X
--tinsert(queue, i+1)
elseif i <= X*(Y-1) then elseif i <= X*(Y-1) then
add_link(i, i+X, ib, true) add_link(i, i+X, ib, true)
else else
add_link(i, 0, ib, true) add_link(i, 0, ib, true)
end end
if d >= 2 then -- River coming from the West if d >= 2 then -- River coming from West
d = d - 2 d = d - 2
queue[#queue+1] = i-1 queue[#queue+1] = i-1
--tinsert(queue, i-X)
elseif i%X ~= 1 then elseif i%X ~= 1 then
add_link(i, i-1, ib, false) add_link(i, i-1, ib, false)
else else
add_link(i, 0, ib, false) add_link(i, 0, ib, false)
end end
if d >= 1 then -- River coming from the North if d >= 1 then -- River coming from North
queue[#queue+1] = i-X queue[#queue+1] = i-X
--tinsert(queue, i-1)
elseif i > X then elseif i > X then
add_link(i, i-X, ib, true) add_link(i, i-X, ib, true)
else else
@ -202,7 +186,7 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
nlinks[i] = 0 nlinks[i] = 0
end end
-- Iterate through pairs of adjacent basins, and make the links reciprocal --for ib1, blinks in ipairs(links) do
for ib1=1, #links do for ib1=1, #links do
for ib2, link in pairs(links[ib1]) do for ib2, link in pairs(links[ib1]) do
if ib2 < ib1 then if ib2 < ib1 then
@ -213,15 +197,6 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
end end
end end
-----------------------------------------------------
-- STEP 3: Compute minimal spanning tree of basins --
-----------------------------------------------------
-- We've got an adjacency list of basins with the elevation of their links.
-- We will build a minimal spanning tree of the basins (where costs are the elevation of the links). As demonstrated by Cordonnier et al., this finds the outlets of the basins, where water would naturally flow. This does not tell in which direction water is flowing, however.
-- We will use a version of Borůvka's algorithm, with Mareš' optimizations to approach linear complexity (see paper).
-- The concept of Borůvka's algorithm is to take elements and merge them with their lowest neighbour, until all elements are merged.
-- Mareš' optimizations mainly consist in skipping elements that have over 8 links, until extra links are removed when other elements are merged.
-- Note that for this step we are only working on basins, not grid nodes.
local lowlevel = {} local lowlevel = {}
for i, n in pairs(nlinks) do for i, n in pairs(nlinks) do
if n <= 8 then if n <= 8 then
@ -231,8 +206,6 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
local basin_graph = {} local basin_graph = {}
for n=1, nbasins do for n=1, nbasins do
-- Iterate in lowlevel but its contents may change during the loop
-- 'next' called with only one argument always returns an element if table is not empty
local b1, lnk1 = next(lowlevel) local b1, lnk1 = next(lowlevel)
lowlevel[b1] = nil lowlevel[b1] = nil
@ -240,7 +213,6 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
local lowest = math.huge local lowest = math.huge
local lnk1 = links[b1] local lnk1 = links[b1]
local i = 0 local i = 0
-- Look for lowest link
for bn, bdata in pairs(lnk1) do for bn, bdata in pairs(lnk1) do
i = i + 1 i = i + 1
if bdata.elev < lowest then if bdata.elev < lowest then
@ -249,7 +221,7 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
end end
end end
-- Add link to the graph, in both directions -- Add link to the graph
local bound = lnk1[b2] local bound = lnk1[b2]
local bb1, bb2 = bound[1], bound[2] local bb1, bb2 = bound[1], bound[2]
if not basin_graph[bb1] then if not basin_graph[bb1] then
@ -267,7 +239,6 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
lnk1[b2] = nil lnk1[b2] = nil
lnk2[b1] = nil lnk2[b1] = nil
nlinks[b2] = nlinks[b2] - 1 nlinks[b2] = nlinks[b2] - 1
-- When the number of links is changing, we need to check whether the basin can be added to / removed from 'lowlevel'
if nlinks[b2] == 8 then if nlinks[b2] == 8 then
lowlevel[b2] = lnk2 lowlevel[b2] = lnk2
end end
@ -276,32 +247,25 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
local lnkn = links[bn] local lnkn = links[bn]
lnkn[b1] = nil lnkn[b1] = nil
if lnkn[b2] then -- If bassin bn is also linked to b2 if lnkn[b2] then
nlinks[bn] = nlinks[bn] - 1 -- Then bassin bn is losing a link because it keeps only one link toward b1/b2 after the merge nlinks[bn] = nlinks[bn] - 1
if nlinks[bn] == 8 then if nlinks[bn] == 8 then
lowlevel[bn] = lnkn lowlevel[bn] = lnkn
end end
else -- If bn was linked to b1 but not to b2 else
nlinks[b2] = nlinks[b2] + 1 -- Then b2 is gaining a link to bn because of the merge nlinks[b2] = nlinks[b2] + 1
if nlinks[b2] == 9 then if nlinks[b2] == 9 then
lowlevel[b2] = nil lowlevel[b2] = nil
end end
end end
if not lnkn[b2] or lnkn[b2].elev > bdata.elev then -- If the link b1-bn will become the new lowest link between b2 and bn, redirect the link to b2 if not lnkn[b2] or lnkn[b2].elev > bdata.elev then
lnkn[b2] = bdata lnkn[b2] = bdata
lnk2[bn] = bdata lnk2[bn] = bdata
end end
end end
end end
--------------------------------------------------------------
-- STEP 4: Orient basin graph, and grid nodes inside basins --
--------------------------------------------------------------
-- We will finally solve those freaking singular nodes.
-- To orient the basin graph, we will consider that the ultimate basin water should flow into is the map outside (basin #0). We will start from it and recursively walk upstream to the neighbouring basins, using only links that are in the minimal spanning tree. This gives the flow direction of the links, and thus, the outlet of every basin.
-- This will also give lake elevation, which is the highest link encountered between map outside and the given basin on the spanning tree.
-- And within each basin, we need to modify flow directions to connect the singular node to the outlet.
local queue = {[0] = -math.huge} local queue = {[0] = -math.huge}
local basin_lake = {} local basin_lake = {}
for n=1, nbasins do for n=1, nbasins do
@ -309,17 +273,15 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
end end
local reverse = {3, 4, 1, 2, [0]=0} local reverse = {3, 4, 1, 2, [0]=0}
for n=1, nbasins do for n=1, nbasins do
local b1, elev1 = next(queue) -- Pop from queue local b1, elev1 = next(queue)
queue[b1] = nil queue[b1] = nil
basin_lake[b1] = elev1 basin_lake[b1] = elev1
-- Iterate through b1's neighbours (according to the spanning tree)
for b2, bound in pairs(basin_graph[b1]) do for b2, bound in pairs(basin_graph[b1]) do
-- Make b2 flow into b1 -- Make b2 flow into b1
local i = bound.i -- Get the coordinate of the link (which is the basin's outlet) local i = bound.i
local dir = bound.is_y and 3 or 4 -- And get the direction (S/E/N/W) local dir = bound.is_y and 3 or 4
if basin_id[i] ~= b2 then if basin_id[i] ~= b2 then
dir = dir - 2 dir = dir - 2
-- Coordinate 'i' refers to the side of the link with the highest X/Y position. In case it is in the wrong basin, take the other side by decrementing by one row/column.
if bound.is_y then if bound.is_y then
i = i - X i = i - X
else else
@ -329,12 +291,8 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
dir = 0 dir = 0
end end
-- Use the flow directions computed in STEP 2 to find the route from the outlet position to the singular node, and reverse this route to make the singular node flow into the outlet
-- This can make the river flow uphill, which may seem unnatural, but it can only happen below a lake (because outlet elevation defines lake surface elevation)
repeat repeat
-- Assign i's direction to 'dir', and get i's former direction
dir, dirs[i] = dirs[i], dir dir, dirs[i] = dirs[i], dir
-- Move i by following its former flow direction (downstream)
if dir == 1 then if dir == 1 then
i = i + X i = i + X
elseif dir == 2 then elseif dir == 2 then
@ -344,36 +302,26 @@ local function flow_routing(dem, dirs, lakes, method) -- 'dirs' and 'lakes' are
elseif dir == 4 then elseif dir == 4 then
i = i - 1 i = i - 1
end end
-- Reverse the flow direction for the next node, which will flow into i
dir = reverse[dir] dir = reverse[dir]
until dir == 0 -- Stop when reaching the singular node until dir == 0
-- Add b2 into the queue
-- Add basin b2 into the queue, and keep the highest link elevation, that will define the elevation of the lake in b2
queue[b2] = mmax(elev1, bound.elev) queue[b2] = mmax(elev1, bound.elev)
-- Remove b1 from b2's neighbours to avoid coming back to b1
basin_graph[b2][b1] = nil basin_graph[b2][b1] = nil
end end
basin_graph[b1] = nil basin_graph[b1] = nil
end end
-- Every node will be assigned the lake elevation of the basin it belongs to.
-- If lake elevation is lower than ground elevation, it simply means that there is no lake here.
for i=1, X*Y do for i=1, X*Y do
lakes[i] = basin_lake[basin_id[i]] lakes[i] = basin_lake[basin_id[i]]
end end
-- That's it!
return dirs, lakes return dirs, lakes
end end
local function accumulate(dirs, waterq) local function accumulate(dirs, waterq)
-- Calculates the river flow by determining the surface of the catchment area for every node
-- This means: how many nodes will give their water to that given node, directly or indirectly?
-- This is obtained by following rivers downstream and summing up the flow of every tributary, starting with a value of 1 at the sources.
-- This will give non-zero values for every node but only large values will be considered to be rivers.
waterq = waterq or {} waterq = waterq or {}
local X, Y = dirs.X, dirs.Y local X, Y = dirs.X, dirs.Y
--local tinsert = table.insert
local ndonors = {} local ndonors = {}
local waterq = {X=X, Y=Y} local waterq = {X=X, Y=Y}
@ -382,7 +330,7 @@ local function accumulate(dirs, waterq)
waterq[i] = 1 waterq[i] = 1
end end
-- Calculate the number of direct donors --for i1, dir in ipairs(dirs) do
for i1=1, X*Y do for i1=1, X*Y do
local i2 local i2
local dir = dirs[i1] local dir = dirs[i1]
@ -401,12 +349,10 @@ local function accumulate(dirs, waterq)
end end
for i1=1, X*Y do for i1=1, X*Y do
-- Find sources (nodes that have no donor)
if ndonors[i1] == 0 then if ndonors[i1] == 0 then
local i2 = i1 local i2 = i1
local dir = dirs[i2] local dir = dirs[i2]
local w = waterq[i2] local w = waterq[i2]
-- Follow the water flow downstream: move 'i2' to the next node according to its flow direction
while dir > 0 do while dir > 0 do
if dir == 1 then if dir == 1 then
i2 = i2 + X i2 = i2 + X
@ -417,12 +363,9 @@ local function accumulate(dirs, waterq)
elseif dir == 4 then elseif dir == 4 then
i2 = i2 - 1 i2 = i2 - 1
end end
-- Increment the water quantity of i2
w = w + waterq[i2] w = w + waterq[i2]
waterq[i2] = w waterq[i2] = w
-- Stop on an unresolved confluence (node with >1 donors) and decrease the number of remaining donors
-- When the ndonors of a confluence has decreased to 1, it means that its water quantity has already been incremented by its tributaries, so it can be resolved like a standard river section. However, do not decrease ndonors to zero to avoid considering it as a source.
if ndonors[i2] > 1 then if ndonors[i2] > 1 then
ndonors[i2] = ndonors[i2] - 1 ndonors[i2] = ndonors[i2] - 1
break break

View File

@ -1,4 +1,4 @@
-- twist.lua -- bounds.lua
local function get_bounds(dirs, rivers) local function get_bounds(dirs, rivers)
local X, Y = dirs.X, dirs.Y local X, Y = dirs.X, dirs.Y