mirror of
https://github.com/minetest/irrlicht.git
synced 2024-12-25 18:20:30 +01:00
Merging r6405 through r6424 from trunk to ogl-es branch
git-svn-id: svn://svn.code.sf.net/p/irrlicht/code/branches/ogl-es@6425 dfc29bdd-3216-0410-991c-e03cc46cb475
This commit is contained in:
parent
ddc14ea87e
commit
07f17647d2
@ -11,6 +11,8 @@ Changes in ogl-es (not yet released - will be merged with trunk at some point)
|
||||
--------------------------
|
||||
Changes in 1.9 (not yet released)
|
||||
|
||||
- Fix MouseButtonStates for mouse events in CIrrDeviceSDL when middle or right button are released.
|
||||
- CGUIContextMenu no longer marks EMIE_MOUSE_MOVED as handled
|
||||
- core::array::linear_search and linear_reverse_search can now work with any types as long as corresponding operator== is implemented.
|
||||
- Add checks for sane image sizes in some image loaders (so far: bmp, jpg, tga, png).
|
||||
Thanks @sfan5 for the original patch (got modified a bit): https://github.com/minetest/irrlicht/commit/dbd39120e7ed8c0c97e48e2df62347627f3c1d42
|
||||
@ -383,6 +385,7 @@ Changes in 1.9 (not yet released)
|
||||
|
||||
--------------------------
|
||||
Changes in 1.8.6
|
||||
- Avoid warning about stringop-overflow in string<T>::subString when compiling in release with newer gcc
|
||||
- Update library zlib to 1.2.11 (from 1.2.8)
|
||||
- Update library bzip2 to 1.0.8 (from 1.0.6)
|
||||
- Security: Fix buffer overflow caused by malformed md2 files. Thanks @procfs for reporting (https://irrlicht.sourceforge.io/forum/viewtopic.php?f=7&t=52785)
|
||||
|
@ -25,6 +25,7 @@ all: all_linux
|
||||
# target specific settings
|
||||
all_linux all_win32 static_win32: LDFLAGS += -L$(IrrlichtHome)/lib/$(SYSTEM) -lIrrlicht
|
||||
all_linux: LDFLAGS += -L/usr/X11R6/lib$(LIBSELECT) -lGL -lEGL -lGLESv1_CM -lGLESv2 -lXxf86vm -lXext -lX11 -lXcursor
|
||||
#all_linux: LDFLAGS += `sdl-config --libs`
|
||||
all_linux clean_linux: SYSTEM=Linux
|
||||
all_win32 clean_win32 static_win32: SYSTEM=Win32-gcc
|
||||
all_win32 clean_win32 static_win32: SUF=.exe
|
||||
|
@ -42,7 +42,7 @@ public:
|
||||
/*
|
||||
Always return false by default. If you return true you tell the engine
|
||||
that you handled this event completely and the Irrlicht should not
|
||||
process it any further. So for example if you return true for all
|
||||
process it any further. So for example if you return true for all
|
||||
EET_KEY_INPUT_EVENT events then Irrlicht would not pass on key-events
|
||||
to it's GUI system.
|
||||
*/
|
||||
@ -54,7 +54,7 @@ public:
|
||||
{
|
||||
return KeyIsDown[keyCode];
|
||||
}
|
||||
|
||||
|
||||
MyEventReceiver()
|
||||
{
|
||||
for (u32 i=0; i<KEY_KEY_CODES_COUNT; ++i)
|
||||
@ -71,7 +71,7 @@ private:
|
||||
The event receiver for keeping the pressed keys is ready, the actual responses
|
||||
will be made inside the render loop, right before drawing the scene. So lets
|
||||
create an irr::IrrlichtDevice and the scene node we want to move. We also
|
||||
create some additional scene nodes to show different possibilities to move and
|
||||
create some additional scene nodes to show different possibilities to move and
|
||||
animate scene nodes.
|
||||
*/
|
||||
int main()
|
||||
@ -82,7 +82,7 @@ int main()
|
||||
return 1;
|
||||
|
||||
/*
|
||||
Create the event receiver. Take care that the pointer to it has to
|
||||
Create the event receiver. Take care that the pointer to it has to
|
||||
stay valid as long as the IrrlichtDevice uses it. Event receivers are not
|
||||
reference counted.
|
||||
*/
|
||||
@ -139,7 +139,7 @@ int main()
|
||||
}
|
||||
|
||||
/*
|
||||
The last scene node we add is a b3d model of a walking ninja. Is shows the
|
||||
The last scene node we add is a b3d model of a walking ninja. Is shows the
|
||||
use of a 'fly straight' animator to move the node between two points.
|
||||
*/
|
||||
scene::IAnimatedMeshSceneNode* ninjaNode =
|
||||
@ -196,7 +196,7 @@ int main()
|
||||
core::position2d<s32>(10,20));
|
||||
|
||||
/*
|
||||
Lets draw the scene and also write the current frames per second and the
|
||||
Lets draw the scene and also write the current frames per second and the
|
||||
name of the driver to the caption of the window.
|
||||
*/
|
||||
int lastFPS = -1;
|
||||
@ -259,7 +259,7 @@ int main()
|
||||
In the end, delete the Irrlicht device.
|
||||
*/
|
||||
device->drop();
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -25,6 +25,7 @@ all: all_linux
|
||||
# target specific settings
|
||||
all_linux all_win32 static_win32: LDFLAGS += -L$(IrrlichtHome)/lib/$(SYSTEM) -lIrrlicht
|
||||
all_linux: LDFLAGS += -L/usr/X11R6/lib$(LIBSELECT) -lGL -lEGL -lGLESv1_CM -lGLESv2 -lXxf86vm -lXext -lX11 -lXcursor
|
||||
#all_linux: LDFLAGS += `sdl-config --libs`
|
||||
all_linux clean_linux: SYSTEM=Linux
|
||||
all_win32 clean_win32 static_win32: SYSTEM=Win32-gcc
|
||||
all_win32 clean_win32 static_win32: SUF=.exe
|
||||
|
@ -35,8 +35,6 @@ of the objects and camera.
|
||||
*/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
// We'll also define this to stop MSVC complaining about sprintf().
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#pragma comment(lib, "Irrlicht.lib")
|
||||
#endif
|
||||
|
||||
@ -150,6 +148,7 @@ int main()
|
||||
*/
|
||||
smgr->addCameraSceneNode();
|
||||
int lastFPS = -1;
|
||||
u32 lastPrimitives = 0;
|
||||
u32 timeNow = device->getTimer()->getTime();
|
||||
bool nodeVisible=true;
|
||||
|
||||
@ -190,16 +189,20 @@ int main()
|
||||
driver->endScene();
|
||||
|
||||
int fps = driver->getFPS();
|
||||
u32 numPrimitives = driver->getPrimitiveCountDrawn();
|
||||
|
||||
if (lastFPS != fps)
|
||||
if (lastFPS != fps || lastPrimitives != numPrimitives)
|
||||
{
|
||||
core::stringw tmp(L"OcclusionQuery Example [");
|
||||
tmp += driver->getName();
|
||||
tmp += L"] fps: ";
|
||||
tmp += fps;
|
||||
tmp += L" polygons: ";
|
||||
tmp += numPrimitives;
|
||||
|
||||
device->setWindowCaption(tmp.c_str());
|
||||
lastFPS = fps;
|
||||
lastPrimitives = numPrimitives;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1,16 +1,16 @@
|
||||
/** Example 027 Post Processing
|
||||
|
||||
This tutorial shows how to implement post processing for D3D9 and OpenGL with
|
||||
This tutorial shows how to implement post processing for D3D9 and OpenGL with
|
||||
the engine. In order to do post processing, scene objects are firstly rendered
|
||||
to render target. With the help of screen quad, the render target texture
|
||||
is then drawn on the quad with shader-defined effects applied.
|
||||
|
||||
This tutorial shows how to create a screen quad. It also shows how to create a
|
||||
This tutorial shows how to create a screen quad. It also shows how to create a
|
||||
render target texture and associate it with the quad. Effects are defined as
|
||||
shaders which are applied during rendering the quad with the render target
|
||||
shaders which are applied during rendering the quad with the render target
|
||||
texture attached to it.
|
||||
|
||||
A simple color inverse example is presented in this tutorial. The effect is
|
||||
A simple color inverse example is presented in this tutorial. The effect is
|
||||
written in HLSL and GLSL.
|
||||
|
||||
@author Boshen Guan
|
||||
@ -29,46 +29,42 @@ using namespace irr;
|
||||
|
||||
/*
|
||||
We write a class derived from IShaderConstantSetCallBack class and implement
|
||||
OnSetConstants callback interface. In this callback, we will set constants
|
||||
OnSetConstants callback interface. In this callback, we will set constants
|
||||
used by the shader.
|
||||
In this example, our HLSL shader needs texture size as input in its vertex
|
||||
In this example, our HLSL shader needs texture size as input in its vertex
|
||||
shader. Therefore, we set texture size in OnSetConstants callback using
|
||||
setVertexShaderConstant function.
|
||||
*/
|
||||
|
||||
IrrlichtDevice* device = 0;
|
||||
video::ITexture* rt = 0;
|
||||
|
||||
class QuadShaderCallBack : public video::IShaderConstantSetCallBack
|
||||
{
|
||||
public:
|
||||
QuadShaderCallBack() : FirstUpdate(true), TextureSizeID(-1), TextureSamplerID(-1)
|
||||
{ }
|
||||
|
||||
virtual void OnSetConstants(video::IMaterialRendererServices* services,
|
||||
s32 userData)
|
||||
{
|
||||
core::dimension2d<u32> size = rt->getSize();
|
||||
|
||||
// get texture size array
|
||||
f32 textureSize[] =
|
||||
{
|
||||
(f32)size.Width, (f32)size.Height
|
||||
};
|
||||
|
||||
virtual void OnSetConstants(video::IMaterialRendererServices* services,
|
||||
s32 userData)
|
||||
{
|
||||
if ( FirstUpdate )
|
||||
{
|
||||
FirstUpdate = false;
|
||||
TextureSizeID = services->getVertexShaderConstantID("TextureSize");
|
||||
TextureSamplerID = services->getPixelShaderConstantID("TextureSampler");
|
||||
}
|
||||
|
||||
// set texture size to vertex shader
|
||||
services->setVertexShaderConstant(TextureSizeID, reinterpret_cast<f32*>(textureSize), 2);
|
||||
|
||||
// set texture for an OpenGL driver
|
||||
s32 textureLayer = 0;
|
||||
services->setPixelShaderConstant(TextureSamplerID, &textureLayer, 1);
|
||||
}
|
||||
// get texture size array (for our simple example HLSL just needs that to calculate pixel centers)
|
||||
core::dimension2d<u32> size = services->getVideoDriver()->getCurrentRenderTargetSize();
|
||||
f32 textureSize[2];
|
||||
textureSize[0] = (f32)size.Width;
|
||||
textureSize[1] = (f32)size.Height;
|
||||
|
||||
// set texture size to vertex shader
|
||||
services->setVertexShaderConstant(TextureSizeID, textureSize, 2);
|
||||
|
||||
// set texture for an OpenGL driver
|
||||
s32 textureLayer = 0;
|
||||
services->setPixelShaderConstant(TextureSamplerID, &textureLayer, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
bool FirstUpdate;
|
||||
@ -80,102 +76,91 @@ class ScreenQuad : public IReferenceCounted
|
||||
{
|
||||
public:
|
||||
|
||||
ScreenQuad(video::IVideoDriver* driver)
|
||||
: Driver(driver)
|
||||
{
|
||||
// --------------------------------> u
|
||||
// |[1](-1, 1)----------[2](1, 1)
|
||||
// | | ( 0, 0) / | (1, 0)
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// |[0](-1, -1)---------[3](1, -1)
|
||||
// | ( 0, 1) (1, 1)
|
||||
// V
|
||||
// v
|
||||
ScreenQuad(video::IVideoDriver* driver)
|
||||
: Driver(driver)
|
||||
{
|
||||
// --------------------------------> u
|
||||
// |[1](-1, 1)----------[2](1, 1)
|
||||
// | | ( 0, 0) / | (1, 0)
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// | | / |
|
||||
// |[0](-1, -1)---------[3](1, -1)
|
||||
// | ( 0, 1) (1, 1)
|
||||
// V
|
||||
// v
|
||||
|
||||
/*
|
||||
A screen quad is composed of two adjacent triangles with 4 vertices.
|
||||
Vertex [0], [1] and [2] create the first triangle and Vertex [0],
|
||||
[2] and [3] create the second one. To map texture on the quad, UV
|
||||
coordinates are assigned to the vertices. The origin of UV coordinate
|
||||
locates on the top-left corner. And the value of UVs range from 0 to 1.
|
||||
*/
|
||||
/*
|
||||
A screen quad is composed of two adjacent triangles with 4 vertices.
|
||||
Vertex [0], [1] and [2] create the first triangle and Vertex [0],
|
||||
[2] and [3] create the second one. To map texture on the quad, UV
|
||||
coordinates are assigned to the vertices. The origin of UV coordinate
|
||||
locates on the top-left corner. And the value of UVs range from 0 to 1.
|
||||
*/
|
||||
|
||||
// define vertices array
|
||||
// define vertices array
|
||||
|
||||
Vertices[0] = irr::video::S3DVertex(-1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 1.0f);
|
||||
Vertices[1] = irr::video::S3DVertex(-1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 0.0f);
|
||||
Vertices[2] = irr::video::S3DVertex( 1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 0.0f);
|
||||
Vertices[3] = irr::video::S3DVertex( 1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 1.0f);
|
||||
Vertices[0] = irr::video::S3DVertex(-1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 1.0f);
|
||||
Vertices[1] = irr::video::S3DVertex(-1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 0.0f, 0.0f);
|
||||
Vertices[2] = irr::video::S3DVertex( 1.0f, 1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 0.0f);
|
||||
Vertices[3] = irr::video::S3DVertex( 1.0f, -1.0f, 0.0f, 1, 1, 0, irr::video::SColor(0,255,255,255), 1.0f, 1.0f);
|
||||
|
||||
// define indices for triangles
|
||||
// define indices for triangles
|
||||
|
||||
Indices[0] = 0;
|
||||
Indices[1] = 1;
|
||||
Indices[2] = 2;
|
||||
Indices[3] = 0;
|
||||
Indices[4] = 2;
|
||||
Indices[5] = 3;
|
||||
Indices[0] = 0;
|
||||
Indices[1] = 1;
|
||||
Indices[2] = 2;
|
||||
Indices[3] = 0;
|
||||
Indices[4] = 2;
|
||||
Indices[5] = 3;
|
||||
|
||||
// turn off lighting as default
|
||||
Material.setFlag(video::EMF_LIGHTING, false);
|
||||
// turn off lighting as default
|
||||
Material.setFlag(video::EMF_LIGHTING, false);
|
||||
|
||||
// set texture warp settings to clamp to edge pixel
|
||||
for (u32 i = 0; i < video::MATERIAL_MAX_TEXTURES; i++)
|
||||
{
|
||||
Material.TextureLayer[i].TextureWrapU = video::ETC_CLAMP_TO_EDGE;
|
||||
Material.TextureLayer[i].TextureWrapV = video::ETC_CLAMP_TO_EDGE;
|
||||
}
|
||||
}
|
||||
// set texture warp settings to clamp to edge pixel
|
||||
for (u32 i = 0; i < video::MATERIAL_MAX_TEXTURES; i++)
|
||||
{
|
||||
Material.TextureLayer[i].TextureWrapU = video::ETC_CLAMP_TO_EDGE;
|
||||
Material.TextureLayer[i].TextureWrapV = video::ETC_CLAMP_TO_EDGE;
|
||||
}
|
||||
}
|
||||
|
||||
virtual ~ScreenQuad() {}
|
||||
virtual ~ScreenQuad() {}
|
||||
|
||||
|
||||
//! render the screen quad
|
||||
virtual void render()
|
||||
{
|
||||
// set the material of screen quad
|
||||
Driver->setMaterial(Material);
|
||||
//! render the screen quad
|
||||
virtual void render()
|
||||
{
|
||||
// set the material of screen quad
|
||||
Driver->setMaterial(Material);
|
||||
|
||||
// set matrices to fit the quad to full viewport
|
||||
Driver->setTransform(video::ETS_WORLD, core::IdentityMatrix);
|
||||
Driver->setTransform(video::ETS_VIEW, core::IdentityMatrix);
|
||||
Driver->setTransform(video::ETS_PROJECTION, core::IdentityMatrix);
|
||||
// set world matrix to fit the quad to full viewport
|
||||
Driver->setTransform(video::ETS_WORLD, core::IdentityMatrix);
|
||||
// view & projection not used in shader, but matter to burnings driver
|
||||
Driver->setTransform(video::ETS_VIEW, core::IdentityMatrix);
|
||||
Driver->setTransform(video::ETS_PROJECTION, core::IdentityMatrix);
|
||||
|
||||
// draw screen quad
|
||||
Driver->drawVertexPrimitiveList(Vertices, 4, Indices, 2);
|
||||
}
|
||||
// draw screen quad
|
||||
Driver->drawVertexPrimitiveList(Vertices, 4, Indices, 2);
|
||||
}
|
||||
|
||||
//! sets a flag of material to a new value
|
||||
virtual void setMaterialFlag(video::E_MATERIAL_FLAG flag, bool newvalue)
|
||||
{
|
||||
Material.setFlag(flag, newvalue);
|
||||
}
|
||||
|
||||
//! sets the texture of the specified layer in material to the new texture.
|
||||
void setMaterialTexture(u32 textureLayer, video::ITexture* texture)
|
||||
{
|
||||
Material.setTexture(textureLayer, texture);
|
||||
}
|
||||
|
||||
//! sets the material type to a new material type.
|
||||
virtual void setMaterialType(video::E_MATERIAL_TYPE newType)
|
||||
{
|
||||
Material.MaterialType = newType;
|
||||
}
|
||||
//! Access the material
|
||||
virtual video::SMaterial& getMaterial()
|
||||
{
|
||||
return Material;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
video::IVideoDriver *Driver;
|
||||
video::S3DVertex Vertices[4];
|
||||
u16 Indices[6];
|
||||
video::SMaterial Material;
|
||||
video::IVideoDriver *Driver;
|
||||
video::S3DVertex Vertices[4];
|
||||
u16 Indices[6];
|
||||
video::SMaterial Material;
|
||||
};
|
||||
|
||||
/*
|
||||
@ -184,233 +169,237 @@ according to the driver type.
|
||||
*/
|
||||
int main()
|
||||
{
|
||||
// ask user for driver
|
||||
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
|
||||
if (driverType==video::EDT_COUNT)
|
||||
return 1;
|
||||
// ask user for driver
|
||||
video::E_DRIVER_TYPE driverType=driverChoiceConsole();
|
||||
if (driverType==video::EDT_COUNT)
|
||||
return 1;
|
||||
|
||||
// create device
|
||||
device = createDevice(driverType, core::dimension2d<u32>(640, 480));
|
||||
// create device
|
||||
IrrlichtDevice* device = createDevice(driverType, core::dimension2d<u32>(640, 480));
|
||||
|
||||
if (device == 0)
|
||||
return 1; // could not create selected driver.
|
||||
if (device == 0)
|
||||
return 1; // could not create selected driver.
|
||||
|
||||
video::IVideoDriver* driver = device->getVideoDriver();
|
||||
scene::ISceneManager* smgr = device->getSceneManager();
|
||||
video::IVideoDriver* driver = device->getVideoDriver();
|
||||
scene::ISceneManager* smgr = device->getSceneManager();
|
||||
|
||||
/*
|
||||
In this example, high level post processing shaders are loaded for both
|
||||
Direct3D and OpenGL drivers.
|
||||
File pp_d3d9.hlsl is for Direct3D 9, and pp_opengl.frag/pp_opengl.vert
|
||||
are for OpenGL.
|
||||
*/
|
||||
/*
|
||||
In this example, high level post processing shaders are loaded for both
|
||||
Direct3D and OpenGL drivers.
|
||||
File pp_d3d9.hlsl is for Direct3D 9, and pp_opengl.frag/pp_opengl.vert
|
||||
are for OpenGL.
|
||||
*/
|
||||
|
||||
const io::path mediaPath = getExampleMediaPath();
|
||||
io::path vsFileName; // filename for the vertex shader
|
||||
io::path psFileName; // filename for the pixel shader
|
||||
io::path vsFileName; // filename for the vertex shader
|
||||
io::path psFileName; // filename for the pixel shader
|
||||
|
||||
switch(driverType)
|
||||
{
|
||||
case video::EDT_DIRECT3D9:
|
||||
psFileName = mediaPath + "pp_d3d9.hlsl";
|
||||
vsFileName = psFileName; // both shaders are in the same file
|
||||
break;
|
||||
switch(driverType)
|
||||
{
|
||||
case video::EDT_DIRECT3D9:
|
||||
psFileName = mediaPath + "pp_d3d9.hlsl";
|
||||
vsFileName = psFileName; // both shaders are in the same file
|
||||
break;
|
||||
|
||||
case video::EDT_OPENGL:
|
||||
case video::EDT_BURNINGSVIDEO:
|
||||
psFileName = mediaPath + "pp_opengl.frag";
|
||||
vsFileName = mediaPath + "pp_opengl.vert";
|
||||
break;
|
||||
}
|
||||
case video::EDT_OPENGL:
|
||||
case video::EDT_BURNINGSVIDEO:
|
||||
psFileName = mediaPath + "pp_opengl.frag";
|
||||
vsFileName = mediaPath + "pp_opengl.vert";
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
Check for hardware capability of executing the corresponding shaders
|
||||
on selected renderer. This is not necessary though.
|
||||
*/
|
||||
/*
|
||||
Check for hardware capability of executing the corresponding shaders
|
||||
on selected renderer. This is not necessary though.
|
||||
*/
|
||||
|
||||
if (!driver->queryFeature(video::EVDF_PIXEL_SHADER_1_1) &&
|
||||
!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1))
|
||||
{
|
||||
device->getLogger()->log("WARNING: Pixel shaders disabled "\
|
||||
"because of missing driver/hardware support.");
|
||||
psFileName = "";
|
||||
}
|
||||
if (!driver->queryFeature(video::EVDF_PIXEL_SHADER_1_1) &&
|
||||
!driver->queryFeature(video::EVDF_ARB_FRAGMENT_PROGRAM_1))
|
||||
{
|
||||
device->getLogger()->log("WARNING: Pixel shaders disabled "\
|
||||
"because of missing driver/hardware support.");
|
||||
psFileName = "";
|
||||
}
|
||||
|
||||
if (!driver->queryFeature(video::EVDF_VERTEX_SHADER_1_1) &&
|
||||
!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
|
||||
{
|
||||
device->getLogger()->log("WARNING: Vertex shaders disabled "\
|
||||
"because of missing driver/hardware support.");
|
||||
vsFileName = "";
|
||||
}
|
||||
if (!driver->queryFeature(video::EVDF_VERTEX_SHADER_1_1) &&
|
||||
!driver->queryFeature(video::EVDF_ARB_VERTEX_PROGRAM_1))
|
||||
{
|
||||
device->getLogger()->log("WARNING: Vertex shaders disabled "\
|
||||
"because of missing driver/hardware support.");
|
||||
vsFileName = "";
|
||||
}
|
||||
|
||||
/*
|
||||
An animated mesh is loaded to be displayed. As in most examples,
|
||||
we'll take the fairy md2 model.
|
||||
*/
|
||||
/*
|
||||
An animated mesh is loaded to be displayed. As in most examples,
|
||||
we'll take the fairy md2 model.
|
||||
*/
|
||||
|
||||
// load and display animated fairy mesh
|
||||
// load and display animated fairy mesh
|
||||
|
||||
scene::IAnimatedMeshSceneNode* fairy = smgr->addAnimatedMeshSceneNode(
|
||||
smgr->getMesh(mediaPath + "faerie.md2"));
|
||||
scene::IAnimatedMeshSceneNode* fairy = smgr->addAnimatedMeshSceneNode(
|
||||
smgr->getMesh(mediaPath + "faerie.md2"));
|
||||
|
||||
if (fairy)
|
||||
{
|
||||
fairy->setMaterialTexture(0,
|
||||
driver->getTexture(mediaPath + "faerie2.bmp")); // set diffuse texture
|
||||
fairy->setMaterialFlag(video::EMF_LIGHTING, false); // disable dynamic lighting
|
||||
fairy->setPosition(core::vector3df(-10,0,-100));
|
||||
fairy->setMD2Animation ( scene::EMAT_STAND );
|
||||
}
|
||||
if (fairy)
|
||||
{
|
||||
fairy->setMaterialTexture(0,
|
||||
driver->getTexture(mediaPath + "faerie2.bmp")); // set diffuse texture
|
||||
fairy->setMaterialFlag(video::EMF_LIGHTING, false); // disable dynamic lighting
|
||||
fairy->setPosition(core::vector3df(-10,0,-100));
|
||||
fairy->setMD2Animation ( scene::EMAT_STAND );
|
||||
}
|
||||
|
||||
// add scene camera
|
||||
smgr->addCameraSceneNode(0, core::vector3df(10,10,-80),
|
||||
core::vector3df(-10,10,-100));
|
||||
// add scene camera
|
||||
smgr->addCameraSceneNode(0, core::vector3df(10,10,-80),
|
||||
core::vector3df(-10,10,-100));
|
||||
|
||||
/*
|
||||
We create a render target texture (RTT) with the same size as frame buffer.
|
||||
Instead of rendering the scene directly to the frame buffer, we firstly
|
||||
render it to this RTT. Post processing is then applied based on this RTT.
|
||||
RTT size needs not to be the same with frame buffer though. However in this
|
||||
example, we expect the result of rendering to RTT to be consistent with the
|
||||
result of rendering directly to the frame buffer. Therefore, the size of
|
||||
RTT keeps the same with frame buffer.
|
||||
*/
|
||||
/*
|
||||
We create a render target texture (RTT) with the same size as frame buffer.
|
||||
Instead of rendering the scene directly to the frame buffer, we firstly
|
||||
render it to this RTT. Post processing is then applied based on this RTT.
|
||||
RTT size needs not to be the same with frame buffer though. However in this
|
||||
example, we expect the result of rendering to RTT to be consistent with the
|
||||
result of rendering directly to the frame buffer. Therefore, the size of
|
||||
RTT keeps the same with frame buffer.
|
||||
*/
|
||||
|
||||
// create render target
|
||||
// create render target
|
||||
video::ITexture* rt = 0;
|
||||
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET))
|
||||
{
|
||||
rt = driver->addRenderTargetTexture(core::dimension2d<u32>(640, 480), "RTT1");
|
||||
}
|
||||
else
|
||||
{
|
||||
device->getLogger()->log("Your hardware or this renderer is not able to use the "\
|
||||
"render to texture feature. RTT Disabled.");
|
||||
}
|
||||
|
||||
if (driver->queryFeature(video::EVDF_RENDER_TO_TARGET))
|
||||
{
|
||||
rt = driver->addRenderTargetTexture(core::dimension2d<u32>(640, 480), "RTT1");
|
||||
}
|
||||
else
|
||||
{
|
||||
device->getLogger()->log("Your hardware or this renderer is not able to use the "\
|
||||
"render to texture feature. RTT Disabled.");
|
||||
}
|
||||
/*
|
||||
Post processing is achieved by rendering a screen quad with this RTT (with
|
||||
previously rendered result) as a texture on the quad. A screen quad is
|
||||
geometry of flat plane composed of two adjacent triangles covering the
|
||||
entire area of viewport. In this pass of rendering, RTT works just like
|
||||
a normal texture and is drawn on the quad during rendering. We can then
|
||||
take control of this rendering process by applying various shader-defined
|
||||
materials to the quad. In other words, we can achieve different effect by
|
||||
writing different shaders.
|
||||
This process is called post processing because it normally does not rely
|
||||
on scene geometry. The inputs of this process are just textures, or in
|
||||
other words, just images. With the help of screen quad, we can draw these
|
||||
images on the screen with different effects. For example, we can adjust
|
||||
contrast, make grayscale, add noise, do more fancy effect such as blur,
|
||||
bloom, ghost, or just like in this example, we invert the color to produce
|
||||
negative image.
|
||||
Note that post processing is not limited to use only one texture. It can
|
||||
take multiple textures as shader inputs to provide desired result. In
|
||||
addition, post processing can also be chained to produce compound result.
|
||||
*/
|
||||
|
||||
/*
|
||||
Post processing is achieved by rendering a screen quad with this RTT (with
|
||||
previously rendered result) as a texture on the quad. A screen quad is
|
||||
geometry of flat plane composed of two adjacent triangles covering the
|
||||
entire area of viewport. In this pass of rendering, RTT works just like
|
||||
a normal texture and is drawn on the quad during rendering. We can then
|
||||
take control of this rendering process by applying various shader-defined
|
||||
materials to the quad. In other words, we can achieve different effect by
|
||||
writing different shaders.
|
||||
This process is called post processing because it normally does not rely
|
||||
on scene geometry. The inputs of this process are just textures, or in
|
||||
other words, just images. With the help of screen quad, we can draw these
|
||||
images on the screen with different effects. For example, we can adjust
|
||||
contrast, make grayscale, add noise, do more fancy effect such as blur,
|
||||
bloom, ghost, or just like in this example, we invert the color to produce
|
||||
negative image.
|
||||
Note that post processing is not limited to use only one texture. It can
|
||||
take multiple textures as shader inputs to provide desired result. In
|
||||
addition, post processing can also be chained to produce compound result.
|
||||
*/
|
||||
// we create a screen quad
|
||||
ScreenQuad *screenQuad = new ScreenQuad(driver);
|
||||
video::SMaterial& screenQuadMaterial = screenQuad->getMaterial();
|
||||
|
||||
// we create a screen quad
|
||||
ScreenQuad *screenQuad = new ScreenQuad(driver);
|
||||
// turn off mip maps and bilinear filter since we do not want interpolated results
|
||||
screenQuadMaterial.setFlag(video::EMF_USE_MIP_MAPS, false);
|
||||
screenQuadMaterial.setFlag(video::EMF_BILINEAR_FILTER, false);
|
||||
|
||||
// turn off mip maps and bilinear filter since we do not want interpolated result
|
||||
screenQuad->setMaterialFlag(video::EMF_USE_MIP_MAPS, false);
|
||||
screenQuad->setMaterialFlag(video::EMF_BILINEAR_FILTER, false);
|
||||
// turn off depth buffer, because our full screen 2D overlay doesn't process depth
|
||||
screenQuadMaterial.setFlag(video::EMF_ZBUFFER, false);
|
||||
|
||||
// set quad texture to RTT we just create
|
||||
screenQuad->setMaterialTexture(0, rt);
|
||||
// set quad texture to RTT we just create
|
||||
screenQuadMaterial.setTexture(0, rt);
|
||||
|
||||
/*
|
||||
Let's create material for the quad. Like in other example, we create material
|
||||
using IGPUProgrammingServices and call addShaderMaterialFromFiles, which
|
||||
returns a material type identifier.
|
||||
*/
|
||||
/*
|
||||
Let's create material for the quad. Like in other example, we create material
|
||||
using IGPUProgrammingServices and call addShaderMaterialFromFiles, which
|
||||
returns a material type identifier.
|
||||
*/
|
||||
|
||||
// create materials
|
||||
// create materials
|
||||
|
||||
video::IGPUProgrammingServices* gpu = driver->getGPUProgrammingServices();
|
||||
s32 ppMaterialType = 0;
|
||||
video::IGPUProgrammingServices* gpu = driver->getGPUProgrammingServices();
|
||||
s32 ppMaterialType = 0;
|
||||
|
||||
if (gpu)
|
||||
{
|
||||
// We write a QuadShaderCallBack class that implements OnSetConstants
|
||||
// callback of IShaderConstantSetCallBack class at the beginning of
|
||||
// this tutorial. We set shader constants in this callback.
|
||||
|
||||
// create an instance of callback class
|
||||
if (gpu)
|
||||
{
|
||||
// We write a QuadShaderCallBack class that implements OnSetConstants
|
||||
// callback of IShaderConstantSetCallBack class at the beginning of
|
||||
// this tutorial. We set shader constants in this callback.
|
||||
|
||||
QuadShaderCallBack* mc = new QuadShaderCallBack();
|
||||
// create an instance of callback class
|
||||
|
||||
// create material from post processing shaders
|
||||
QuadShaderCallBack* mc = new QuadShaderCallBack();
|
||||
|
||||
ppMaterialType = gpu->addHighLevelShaderMaterialFromFiles(
|
||||
vsFileName, "vertexMain", video::EVST_VS_1_1,
|
||||
psFileName, "pixelMain", video::EPST_PS_1_1, mc);
|
||||
// create material from post processing shaders
|
||||
|
||||
mc->drop();
|
||||
}
|
||||
ppMaterialType = gpu->addHighLevelShaderMaterialFromFiles(
|
||||
vsFileName, "vertexMain", video::EVST_VS_1_1,
|
||||
psFileName, "pixelMain", video::EPST_PS_1_1, mc);
|
||||
|
||||
// set post processing material type to the quad
|
||||
screenQuad->setMaterialType((video::E_MATERIAL_TYPE)ppMaterialType);
|
||||
mc->drop();
|
||||
}
|
||||
|
||||
/*
|
||||
Now draw everything. That's all.
|
||||
*/
|
||||
// set post processing material type to the quad
|
||||
screenQuadMaterial.MaterialType = (video::E_MATERIAL_TYPE)ppMaterialType;
|
||||
|
||||
int lastFPS = -1;
|
||||
/*
|
||||
Now draw everything. That's all.
|
||||
*/
|
||||
|
||||
while(device->run())
|
||||
{
|
||||
if (device->isWindowActive())
|
||||
{
|
||||
driver->beginScene(true, true, video::SColor(255,0,0,0));
|
||||
int lastFPS = -1;
|
||||
|
||||
if (rt)
|
||||
{
|
||||
// draw scene into render target
|
||||
while(device->run())
|
||||
{
|
||||
if (device->isWindowActive())
|
||||
{
|
||||
driver->beginScene(true, true, video::SColor(255,0,0,0));
|
||||
|
||||
// set render target to RTT
|
||||
driver->setRenderTarget(rt, true, true, video::SColor(255,0,0,0));
|
||||
if (rt)
|
||||
{
|
||||
// draw scene into render target
|
||||
|
||||
// draw scene to RTT just like normal rendering
|
||||
smgr->drawAll();
|
||||
// set render target to RTT
|
||||
driver->setRenderTarget(rt, true, true, video::SColor(255,0,0,0));
|
||||
|
||||
// after rendering to RTT, we change render target back
|
||||
driver->setRenderTarget(0, true, true, video::SColor(255,0,0,0));
|
||||
// draw scene to RTT just like normal rendering
|
||||
smgr->drawAll();
|
||||
|
||||
// render screen quad to apply post processing
|
||||
screenQuad->render();
|
||||
}
|
||||
else
|
||||
{
|
||||
// draw scene normally
|
||||
smgr->drawAll();
|
||||
}
|
||||
// after rendering to RTT, we change render target back
|
||||
driver->setRenderTarget(0, true, true, video::SColor(255,0,0,0));
|
||||
|
||||
driver->endScene();
|
||||
// render screen quad to apply post processing
|
||||
screenQuad->render();
|
||||
}
|
||||
else
|
||||
{
|
||||
// draw scene normally
|
||||
smgr->drawAll();
|
||||
}
|
||||
|
||||
int fps = driver->getFPS();
|
||||
driver->endScene();
|
||||
|
||||
if (lastFPS != fps)
|
||||
{
|
||||
core::stringw str = L"Irrlicht Engine - Post processing example [";
|
||||
str += driver->getName();
|
||||
str += "] FPS:";
|
||||
str += fps;
|
||||
int fps = driver->getFPS();
|
||||
|
||||
device->setWindowCaption(str.c_str());
|
||||
lastFPS = fps;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (lastFPS != fps)
|
||||
{
|
||||
core::stringw str = L"Irrlicht Engine - Post processing example [";
|
||||
str += driver->getName();
|
||||
str += "] FPS:";
|
||||
str += fps;
|
||||
|
||||
// do not forget to manually drop the screen quad
|
||||
device->setWindowCaption(str.c_str());
|
||||
lastFPS = fps;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
screenQuad->drop();
|
||||
// do not forget to manually drop the screen quad
|
||||
|
||||
device->drop();
|
||||
screenQuad->drop();
|
||||
|
||||
return 0;
|
||||
device->drop();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -316,7 +316,7 @@ private:
|
||||
Irrlicht internally uses textures with left-top origin and then corrects the texture-matrices in the fixed-function pipeline.
|
||||
For shader materials it's left to the users to handle those UV-flips for the texture-matrix.
|
||||
Render target textures (RTT's) in OpenGL are rendered with left-bottom origin and Irrlicht can't change that, so all RTT textures
|
||||
in memory are upside-down (unlike all other Irrlicht textures).
|
||||
in memory are upside-down (compared to other Irrlicht textures).
|
||||
In the fixed function pipeline Irrlicht handles this by flipping the RTT's texture matrix once more and for shaders it's again
|
||||
left to the users to handle it.
|
||||
Cubemap textures are different from other textures in OpenGL. Each cube side has left-top as the origin. So not flipping Irrlicht textures for those would be fine.
|
||||
@ -325,7 +325,7 @@ private:
|
||||
|
||||
So... the following 2 defines are two different workarounds I found. Both are ugly, which one is better in reality depends probably on the scene.
|
||||
Only use one of those:
|
||||
CUBEMAP_UPSIDE_DOWN_GL_PROJECTION is relatively fast as it just changes the project matrix. The problem is that changing the projection matrix
|
||||
CUBEMAP_UPSIDE_DOWN_GL_PROJECTION is relatively fast as it just changes the projection matrix. The problem is that changing the projection matrix
|
||||
means changing front/backside culling. So every node rendered has to flip the material flags for those.
|
||||
|
||||
CUBEMAP_USPIDE_DOWN_RTT will change the texture memory itself and flip the image upside-down.
|
||||
@ -591,7 +591,7 @@ int main()
|
||||
}
|
||||
|
||||
/* Add some background which will show up in the environment maps.
|
||||
For first one we use the same textures as used in the spheres.
|
||||
For the first background we use the same textures as used in the spheres.
|
||||
Note the difference between a skybox and a cubemap is that the skybox really uses 6 different
|
||||
textures. While the cubemap uses a single texture created from 6 images. */
|
||||
eventReceiver.BackgroundSkybox = smgr->addSkyBoxSceneNode(
|
||||
@ -639,7 +639,7 @@ int main()
|
||||
#endif
|
||||
|
||||
/*
|
||||
Add some moving node to show the difference between static/dynamic environment maps
|
||||
Add a moving node to show the difference between static/dynamic environment maps
|
||||
*/
|
||||
scene::IMeshSceneNode * movingNode = smgr->addCubeSceneNode(30.f);
|
||||
movingNode->getMaterial(0).Lighting = false;
|
||||
@ -692,7 +692,7 @@ int main()
|
||||
driver->beginScene(true, true, video::SColor(255, 127, 127, 255));
|
||||
|
||||
/* Check if we want to update the environment maps.
|
||||
Usually not something you'll do every frame, but either once at the star
|
||||
Usually not something you'll do every frame, but either once at the start
|
||||
or maybe updating an environment map once in a while.
|
||||
*/
|
||||
int updateCubemaps = eventReceiver.checkCubemapUpdate();
|
||||
@ -704,7 +704,7 @@ int main()
|
||||
{
|
||||
/*
|
||||
Flipping projection matrix flips front/backface culling.
|
||||
We only have a skybox so in this case this still would be fast, with more objects it's getting more ugly.
|
||||
We only have a skybox so in this case it's fast, with more objects it's getting more ugly.
|
||||
*/
|
||||
smgr->getSceneNodesFromType(scene::ESNT_ANY, allNodes);
|
||||
flipCullingFlags(allNodes);
|
||||
|
@ -176,6 +176,17 @@ namespace scene
|
||||
return Vertices[i].TCoords;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual video::SColor& getColor(u32 i) IRR_OVERRIDE
|
||||
{
|
||||
return Vertices[i].Color;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual const video::SColor& getColor(u32 i) const IRR_OVERRIDE
|
||||
{
|
||||
return Vertices[i].Color;
|
||||
}
|
||||
|
||||
//! Append the vertices and indices to the current buffer
|
||||
/** Only works for compatible types, i.e. either the same type
|
||||
|
@ -121,19 +121,23 @@ namespace scene
|
||||
virtual f32 getFOV() const =0;
|
||||
|
||||
//! Sets the value of the near clipping plane. (default: 1.0f)
|
||||
/** \param zn: New z near value. */
|
||||
/** Also changes projection matrix and resets IsOrthogonal flag.
|
||||
\param zn: New z near value. */
|
||||
virtual void setNearValue(f32 zn) =0;
|
||||
|
||||
//! Sets the value of the far clipping plane (default: 2000.0f)
|
||||
/** \param zf: New z far value. */
|
||||
/** Also changes projection matrix and resets IsOrthogonal flag.
|
||||
\param zf: New z far value. */
|
||||
virtual void setFarValue(f32 zf) =0;
|
||||
|
||||
//! Sets the aspect ratio (default: 4.0f / 3.0f)
|
||||
/** \param aspect: New aspect ratio. */
|
||||
/** Also changes projection matrix and resets IsOrthogonal flag.
|
||||
\param aspect: New aspect ratio. */
|
||||
virtual void setAspectRatio(f32 aspect) =0;
|
||||
|
||||
//! Sets the field of view (Default: PI / 2.5f)
|
||||
/** \param fovy: New field of view in radians. */
|
||||
/** Also changes projection matrix and resets IsOrthogonal flag.
|
||||
\param fovy: New field of view in radians. */
|
||||
virtual void setFOV(f32 fovy) =0;
|
||||
|
||||
//! Get the view frustum.
|
||||
@ -165,7 +169,10 @@ namespace scene
|
||||
@see getTargetAndRotationBinding() */
|
||||
virtual void bindTargetAndRotation(bool bound) =0;
|
||||
|
||||
//! Updates the matrices without uploading them to the driver
|
||||
//! Updates the view matrix and frustum without uploading the matrix to the driver.
|
||||
/** You need this when you want an up-to-date camera view matrix & frustum before the render() call.
|
||||
Usually you should call updateAbsolutePosition() before calling this.
|
||||
Despite it's function name, the projection matrix is not touched. */
|
||||
virtual void updateMatrices() = 0;
|
||||
|
||||
//! Queries if the camera scene node's rotation and its target position are bound together.
|
||||
|
@ -166,6 +166,18 @@ namespace scene
|
||||
{
|
||||
return getVertexBuffer()[i].Normal;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual video::SColor& getColor(u32 i) IRR_OVERRIDE
|
||||
{
|
||||
return getVertexBuffer()[i].Color;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual const video::SColor& getColor(u32 i) const IRR_OVERRIDE
|
||||
{
|
||||
return getVertexBuffer()[i].Color;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
@ -22,7 +22,10 @@ namespace scene
|
||||
before or after each scene node is rendered. It is assumed that the
|
||||
ILightManager implementation will store any data that it wishes to
|
||||
retain, i.e. the ISceneManager to which it is assigned, the lightList,
|
||||
the current render pass, and the current scene node. */
|
||||
the current render pass, and the current scene node.
|
||||
|
||||
It can also be useful for shaders as it allows finding out the currently rendered SceneNode.
|
||||
*/
|
||||
class ILightManager : public IReferenceCounted
|
||||
{
|
||||
public:
|
||||
@ -35,27 +38,27 @@ namespace scene
|
||||
the light manager may modify. This reference will remain valid
|
||||
until OnPostRender().
|
||||
*/
|
||||
virtual void OnPreRender(core::array<ISceneNode*> & lightList) = 0;
|
||||
virtual void OnPreRender(core::array<ISceneNode*> & lightList) {};
|
||||
|
||||
//! Called after the last scene node is rendered.
|
||||
/** After this call returns, the lightList passed to OnPreRender() becomes invalid. */
|
||||
virtual void OnPostRender(void) = 0;
|
||||
virtual void OnPostRender(void) {};
|
||||
|
||||
//! Called before a render pass begins
|
||||
/** \param renderPass: the render pass that's about to begin */
|
||||
virtual void OnRenderPassPreRender(E_SCENE_NODE_RENDER_PASS renderPass) = 0;
|
||||
virtual void OnRenderPassPreRender(E_SCENE_NODE_RENDER_PASS renderPass) {};
|
||||
|
||||
//! Called after the render pass specified in OnRenderPassPreRender() ends
|
||||
/** \param[in] renderPass: the render pass that has finished */
|
||||
virtual void OnRenderPassPostRender(E_SCENE_NODE_RENDER_PASS renderPass) = 0;
|
||||
virtual void OnRenderPassPostRender(E_SCENE_NODE_RENDER_PASS renderPass) {};
|
||||
|
||||
//! Called before the given scene node is rendered
|
||||
/** \param[in] node: the scene node that's about to be rendered */
|
||||
virtual void OnNodePreRender(ISceneNode* node) = 0;
|
||||
virtual void OnNodePreRender(ISceneNode* node) {};
|
||||
|
||||
//! Called after the the node specified in OnNodePreRender() has been rendered
|
||||
/** \param[in] node: the scene node that has just been rendered */
|
||||
virtual void OnNodePostRender(ISceneNode* node) = 0;
|
||||
virtual void OnNodePostRender(ISceneNode* node) {};
|
||||
};
|
||||
} // end namespace scene
|
||||
} // end namespace irr
|
||||
|
@ -119,6 +119,12 @@ namespace scene
|
||||
//! returns texture coord of vertex i
|
||||
virtual core::vector2df& getTCoords(u32 i) = 0;
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual video::SColor& getColor(u32 i) = 0;
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual const video::SColor& getColor(u32 i) const = 0;
|
||||
|
||||
//! Append the vertices and indices to the current buffer
|
||||
/** Only works for compatible vertex types
|
||||
and not implemented for most buffers for now.
|
||||
|
@ -103,7 +103,9 @@ namespace scene
|
||||
bool angleWeighted=false) const=0;
|
||||
|
||||
//! Scales the actual mesh, not a scene node.
|
||||
/** \param mesh Mesh on which the operation is performed.
|
||||
/** Note: When your scale are not uniform then
|
||||
prefer the transform function to have correct normals.
|
||||
\param mesh Mesh on which the operation is performed.
|
||||
\param factor Scale factor for each axis. */
|
||||
void scale(IMesh* mesh, const core::vector3df& factor) const
|
||||
{
|
||||
@ -111,7 +113,9 @@ namespace scene
|
||||
}
|
||||
|
||||
//! Scales the actual meshbuffer, not a scene node.
|
||||
/** \param buffer Meshbuffer on which the operation is performed.
|
||||
/** Note: When your scale are not uniform then
|
||||
prefer the transform function to have correct normals.
|
||||
\param buffer Meshbuffer on which the operation is performed.
|
||||
\param factor Scale factor for each axis. */
|
||||
void scale(IMeshBuffer* buffer, const core::vector3df& factor) const
|
||||
{
|
||||
@ -146,9 +150,12 @@ namespace scene
|
||||
/** \param mesh Mesh on which the operation is performed.
|
||||
\param m transformation matrix.
|
||||
\param normalsUpdate When 0 - don't update normals.
|
||||
When 1 - update normals with inverse transposed of the transformation matrix
|
||||
When 1 - update normals with inner 3x3 matrix of the inverse transposed of the transformation matrix
|
||||
should be set when the matrix has rotation or non-uniform scaling
|
||||
\param normalizeNormals When true it normalizes all normals again.
|
||||
Recommended to set this when normalsUpdate is 1 and there is any scaling
|
||||
*/
|
||||
void transform(IMesh* mesh, const core::matrix4& m, u32 normalsUpdate = 0) const
|
||||
void transform(IMesh* mesh, const core::matrix4& m, u32 normalsUpdate = 0, bool normalizeNormals=false) const
|
||||
{
|
||||
apply(SVertexPositionTransformManipulator(m), mesh, true);
|
||||
|
||||
@ -158,18 +165,25 @@ namespace scene
|
||||
if ( m.getInverse(invT) )
|
||||
{
|
||||
invT = invT.getTransposed();
|
||||
apply(SVertexNormalTransformManipulator(invT), mesh, false);
|
||||
apply(SVertexNormalRotateScaleManipulator(invT), mesh, false);
|
||||
}
|
||||
}
|
||||
if ( normalizeNormals )
|
||||
{
|
||||
apply(SVertexNormalizeNormalManipulator(), mesh, false);
|
||||
}
|
||||
}
|
||||
|
||||
//! Applies a transformation to a meshbuffer
|
||||
/** \param buffer Meshbuffer on which the operation is performed.
|
||||
\param m transformation matrix.
|
||||
\param normalsUpdate When 0 - don't update normals.
|
||||
When 1 - update normals with inverse transposed of the transformation matrix
|
||||
When 1 - update normals with inner 3x3 matrix of the inverse transposed of the transformation matrix
|
||||
should be set when the matrix has rotation or non-uniform scaling
|
||||
\param normalizeNormals When true it normalizes all normals again.
|
||||
Recommended to set this when normalsUpdate is 1 and there is any scaling
|
||||
*/
|
||||
void transform(IMeshBuffer* buffer, const core::matrix4& m, u32 normalsUpdate = 0) const
|
||||
void transform(IMeshBuffer* buffer, const core::matrix4& m, u32 normalsUpdate = 0, bool normalizeNormals=false) const
|
||||
{
|
||||
apply(SVertexPositionTransformManipulator(m), buffer, true);
|
||||
|
||||
@ -179,9 +193,13 @@ namespace scene
|
||||
if ( m.getInverse(invT) )
|
||||
{
|
||||
invT = invT.getTransposed();
|
||||
apply(SVertexNormalTransformManipulator(invT), buffer, false);
|
||||
apply(SVertexNormalRotateScaleManipulator(invT), buffer, false);
|
||||
}
|
||||
}
|
||||
if ( normalizeNormals )
|
||||
{
|
||||
apply(SVertexNormalizeNormalManipulator(), buffer, false);
|
||||
}
|
||||
}
|
||||
|
||||
//! Applies a transformation to a mesh
|
||||
@ -239,6 +257,7 @@ namespace scene
|
||||
/** This is useful if you want to draw tangent space normal
|
||||
mapped geometry because it calculates the tangent and binormal
|
||||
data which is needed there.
|
||||
Note: Only 16-bit meshbuffers supported so far
|
||||
\param mesh Input mesh
|
||||
\param recalculateNormals The normals are recalculated if set,
|
||||
otherwise the original ones are kept. Note that keeping the
|
||||
@ -257,7 +276,8 @@ namespace scene
|
||||
bool angleWeighted=false, bool recalculateTangents=true) const=0;
|
||||
|
||||
//! Creates a copy of the mesh, which will only consist of S3DVertex2TCoord vertices.
|
||||
/** \param mesh Input mesh
|
||||
/** Note: Only 16-bit meshbuffers supported so far
|
||||
\param mesh Input mesh
|
||||
\return Mesh consisting only of S3DVertex2TCoord vertices. If
|
||||
you no longer need the cloned mesh, you should call
|
||||
IMesh::drop(). See IReferenceCounted::drop() for more
|
||||
@ -265,7 +285,8 @@ namespace scene
|
||||
virtual IMesh* createMeshWith2TCoords(IMesh* mesh) const = 0;
|
||||
|
||||
//! Creates a copy of the mesh, which will only consist of S3DVertex vertices.
|
||||
/** \param mesh Input mesh
|
||||
/** Note: Only 16-bit meshbuffers supported so far
|
||||
\param mesh Input mesh
|
||||
\return Mesh consisting only of S3DVertex vertices. If
|
||||
you no longer need the cloned mesh, you should call
|
||||
IMesh::drop(). See IReferenceCounted::drop() for more
|
||||
@ -273,15 +294,17 @@ namespace scene
|
||||
virtual IMesh* createMeshWith1TCoords(IMesh* mesh) const = 0;
|
||||
|
||||
//! Creates a copy of a mesh with all vertices unwelded
|
||||
/** \param mesh Input mesh
|
||||
/** Note: Only 16-bit meshbuffers supported so far
|
||||
\param mesh Input mesh
|
||||
\return Mesh consisting only of unique faces. All vertices
|
||||
which were previously shared are now duplicated. If you no
|
||||
longer need the cloned mesh, you should call IMesh::drop(). See
|
||||
IReferenceCounted::drop() for more information. */
|
||||
virtual IMesh* createMeshUniquePrimitives(IMesh* mesh) const = 0;
|
||||
|
||||
//! Creates a copy of a mesh with vertices welded
|
||||
/** \param mesh Input mesh
|
||||
//! Creates a copy of a mesh with vertices welded
|
||||
/** Note: Only 16-bit meshbuffers supported so far, 32-bit buffer are cloned
|
||||
\param mesh Input mesh
|
||||
\param tolerance The threshold for vertex comparisons.
|
||||
\return Mesh without redundant vertices. If you no longer need
|
||||
the cloned mesh, you should call IMesh::drop(). See
|
||||
|
@ -171,6 +171,21 @@ namespace scene
|
||||
return (*Vertices)[Indices[i]].TCoords;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual video::SColor& getColor(u32 i) IRR_OVERRIDE
|
||||
{
|
||||
IRR_DEBUG_BREAK_IF(!Vertices);
|
||||
return (*Vertices)[Indices[i]].Color;
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual const video::SColor& getColor(u32 i) const IRR_OVERRIDE
|
||||
{
|
||||
IRR_DEBUG_BREAK_IF(!Vertices);
|
||||
return (*Vertices)[Indices[i]].Color;
|
||||
}
|
||||
|
||||
|
||||
//! append the vertices and indices to the current buffer
|
||||
virtual void append(const void* const vertices, u32 numVertices, const u16* const indices, u32 numIndices) IRR_OVERRIDE
|
||||
{
|
||||
|
@ -326,6 +326,34 @@ struct SSkinMeshBuffer : public IMeshBuffer
|
||||
}
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual video::SColor& getColor(u32 i) IRR_OVERRIDE
|
||||
{
|
||||
switch (VertexType)
|
||||
{
|
||||
case video::EVT_2TCOORDS:
|
||||
return Vertices_2TCoords[i].Color;
|
||||
case video::EVT_TANGENTS:
|
||||
return Vertices_Tangents[i].Color;
|
||||
default:
|
||||
return Vertices_Standard[i].Color;
|
||||
}
|
||||
}
|
||||
|
||||
//! returns color of vertex i
|
||||
virtual const video::SColor& getColor(u32 i) const IRR_OVERRIDE
|
||||
{
|
||||
switch (VertexType)
|
||||
{
|
||||
case video::EVT_2TCOORDS:
|
||||
return Vertices_2TCoords[i].Color;
|
||||
case video::EVT_TANGENTS:
|
||||
return Vertices_Tangents[i].Color;
|
||||
default:
|
||||
return Vertices_Standard[i].Color;
|
||||
}
|
||||
}
|
||||
|
||||
//! append the vertices and indices to the current buffer
|
||||
virtual void append(const void* const vertices, u32 numVertices, const u16* const indices, u32 numIndices) IRR_OVERRIDE {}
|
||||
|
||||
|
@ -277,6 +277,32 @@ namespace scene
|
||||
core::matrix4 Transformation;
|
||||
};
|
||||
|
||||
//! Vertex manipulator which transforms the normal of the vertex with the rotate/scale part of the given matrix (inner 3x3)
|
||||
class SVertexNormalRotateScaleManipulator : public IVertexManipulator
|
||||
{
|
||||
public:
|
||||
SVertexNormalRotateScaleManipulator(const core::matrix4& m) : Transformation(m) {}
|
||||
template <typename VType>
|
||||
void operator()(VType& vertex) const
|
||||
{
|
||||
Transformation.rotateVect(vertex.Normal);
|
||||
}
|
||||
private:
|
||||
core::matrix4 Transformation;
|
||||
};
|
||||
|
||||
//! Vertex manipulator which normalizes the normal of the vertex
|
||||
class SVertexNormalizeNormalManipulator : public IVertexManipulator
|
||||
{
|
||||
public:
|
||||
SVertexNormalizeNormalManipulator() {}
|
||||
template <typename VType>
|
||||
void operator()(VType& vertex) const
|
||||
{
|
||||
vertex.Normal.normalize();
|
||||
}
|
||||
};
|
||||
|
||||
//! Vertex manipulator which scales the TCoords of the vertex
|
||||
class SVertexTCoordsScaleManipulator : public IVertexManipulator
|
||||
{
|
||||
|
@ -947,13 +947,13 @@ public:
|
||||
\param make_lower copy only lower case */
|
||||
string<T> subString(u32 begin, s32 length, bool make_lower = false ) const
|
||||
{
|
||||
// clamp length to maximal value
|
||||
if ((length+begin) > size())
|
||||
length = size()-begin;
|
||||
// if start after string
|
||||
// or no proper substring length
|
||||
if ((length <= 0) || (begin>=size()))
|
||||
return string<T>("");
|
||||
// clamp length to maximal value
|
||||
if ((length+begin) > size())
|
||||
length = size()-begin;
|
||||
|
||||
string<T> o;
|
||||
o.reserve(length+1);
|
||||
|
@ -221,10 +221,10 @@ namespace core
|
||||
//! Translate a vector by the inverse of the translation part of this matrix.
|
||||
void inverseTranslateVect( vector3df& vect ) const;
|
||||
|
||||
//! Rotate a vector by the inverse of the rotation part of this matrix.
|
||||
//! Tranform (rotate/scale) a vector by the inverse of the rotation part this matrix
|
||||
void inverseRotateVect( vector3df& vect ) const;
|
||||
|
||||
//! Rotate a vector by the rotation part of this matrix.
|
||||
//! Transform (rotate/scale) a vector by the rotation part of this matrix.
|
||||
void rotateVect( vector3df& vect ) const;
|
||||
|
||||
//! An alternate transform vector method, writing into a second vector
|
||||
|
@ -28,16 +28,16 @@ CCameraSceneNode::CCameraSceneNode(ISceneNode* parent, ISceneManager* mgr, s32 i
|
||||
|
||||
// set default projection
|
||||
Fovy = core::PI / 2.5f; // Field of view, in radians.
|
||||
Aspect = 4.0f / 3.0f; // Aspect ratio.
|
||||
|
||||
const video::IVideoDriver* const d = mgr?mgr->getVideoDriver():0;
|
||||
if (d)
|
||||
{
|
||||
Aspect = (f32)d->getCurrentRenderTargetSize().Width /
|
||||
(f32)d->getCurrentRenderTargetSize().Height;
|
||||
if ( d->getCurrentRenderTargetSize().Height )
|
||||
Aspect = (f32)d->getCurrentRenderTargetSize().Width /
|
||||
(f32)d->getCurrentRenderTargetSize().Height;
|
||||
HasD3DStyleProjectionMatrix = d->getDriverType() != video::EDT_OPENGL;
|
||||
}
|
||||
else
|
||||
Aspect = 4.0f / 3.0f; // Aspect ratio.
|
||||
|
||||
ViewArea.setFarNearDistance(ZFar - ZNear);
|
||||
recalculateProjectionMatrix();
|
||||
@ -252,6 +252,7 @@ void CCameraSceneNode::OnRegisterSceneNode()
|
||||
//! render
|
||||
void CCameraSceneNode::render()
|
||||
{
|
||||
updateAbsolutePosition(); // depending on that call in onAnimate is risky (might not be in SceneManager or it or it's parent might be invisible and still should render)
|
||||
updateMatrices();
|
||||
|
||||
video::IVideoDriver* driver = SceneManager->getVideoDriver();
|
||||
|
@ -1827,7 +1827,7 @@ void CColladaMeshWriter::writeMeshGeometry(const irr::core::stringc& meshname, s
|
||||
|
||||
if ( buffer->getPrimitiveType() != EPT_TRIANGLES )
|
||||
{
|
||||
os::Printer::log("Collada writer does not support non-triangle meshbuffers. Mesh: ", meshname.c_str(), ELL_WARNING);
|
||||
os::Printer::log("Collada writer does not support non-triangle meshbuffers. Mesh", meshname.c_str(), ELL_WARNING);
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -1865,12 +1865,16 @@ void CColladaMeshWriter::writeMeshGeometry(const irr::core::stringc& meshname, s
|
||||
|
||||
Writer->writeElement("p", false);
|
||||
|
||||
const video::E_INDEX_TYPE iType = buffer->getIndexType();
|
||||
const u16* idx16 = buffer->getIndices();
|
||||
const u32* idx32 = (u32*)buffer->getIndices();
|
||||
|
||||
core::stringc strP;
|
||||
strP.reserve(100);
|
||||
for (u32 p=0; p<polyCount; ++p)
|
||||
{
|
||||
// Irrlicht uses clockwise, Collada uses counter-clockwise to define front-face
|
||||
u32 irrIdx = buffer->getIndices()[(p*3) + 2];
|
||||
u32 irrIdx = iType == video::EIT_16BIT ? idx16[p*3 + 2] : idx32[p*3 + 2];
|
||||
strP = "";
|
||||
strP += irrIdx + posIdx;
|
||||
strP += " ";
|
||||
@ -1884,7 +1888,7 @@ void CColladaMeshWriter::writeMeshGeometry(const irr::core::stringc& meshname, s
|
||||
strP += " ";
|
||||
}
|
||||
|
||||
irrIdx = buffer->getIndices()[(p*3) + 1];
|
||||
irrIdx = iType == video::EIT_16BIT ? idx16[p*3 + 1] : idx32[p*3 + 1];
|
||||
strP += irrIdx + posIdx;
|
||||
strP += " ";
|
||||
strP += irrIdx + tCoordIdx;
|
||||
@ -1897,7 +1901,7 @@ void CColladaMeshWriter::writeMeshGeometry(const irr::core::stringc& meshname, s
|
||||
strP += " ";
|
||||
}
|
||||
|
||||
irrIdx = buffer->getIndices()[(p*3) + 0];
|
||||
irrIdx = iType == video::EIT_16BIT ? idx16[p*3] : idx32[p*3];
|
||||
strP += irrIdx + posIdx;
|
||||
strP += " ";
|
||||
strP += irrIdx + tCoordIdx;
|
||||
|
@ -3001,7 +3001,7 @@ bool CD3D9Driver::reset()
|
||||
}
|
||||
else
|
||||
{
|
||||
os::Printer::log("Resetting failed due to unknown reason.", core::stringc((int)hr).c_str(), ELL_WARNING);
|
||||
os::Printer::log("Resetting failed due to unknown reason", core::stringc((int)hr).c_str(), ELL_WARNING);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
@ -339,7 +339,7 @@ bool CGUIContextMenu::OnEvent(const SEvent& event)
|
||||
case EMIE_MOUSE_MOVED:
|
||||
if (Environment->hasFocus(this))
|
||||
highlight(core::position2d<s32>(event.MouseInput.X, event.MouseInput.Y), true);
|
||||
return true;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
@ -423,7 +423,7 @@ u32 CGUIContextMenu::sendClick(const core::position2d<s32>& p)
|
||||
}
|
||||
|
||||
|
||||
//! returns true, if an element was highligted
|
||||
//! returns true, if an element was highlighted
|
||||
bool CGUIContextMenu::highlight(const core::position2d<s32>& p, bool canOpenSubMenu)
|
||||
{
|
||||
if (!isEnabled())
|
||||
|
@ -810,7 +810,7 @@ bool CGUIEnvironment::loadGUI(const io::path& filename, IGUIElement* parent)
|
||||
io::IReadFile* read = FileSystem->createAndOpenFile(filename);
|
||||
if (!read)
|
||||
{
|
||||
os::Printer::log("Unable to open gui file", filename, ELL_ERROR);
|
||||
os::Printer::log("Unable to open GUI file", filename, ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -137,7 +137,7 @@ bool CImageLoaderJPG::isALoadableFileFormat(io::IReadFile* file) const
|
||||
IImage* CImageLoaderJPG::loadImage(io::IReadFile* file) const
|
||||
{
|
||||
#ifndef _IRR_COMPILE_WITH_LIBJPEG_
|
||||
os::Printer::log("Can't load as not compiled with _IRR_COMPILE_WITH_LIBJPEG_:", file->getFileName(), ELL_DEBUG);
|
||||
os::Printer::log("Can't load as not compiled with _IRR_COMPILE_WITH_LIBJPEG_", file->getFileName(), ELL_DEBUG);
|
||||
return 0;
|
||||
#else
|
||||
|
||||
|
@ -99,14 +99,14 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
// Read the first few bytes of the PNG file
|
||||
if( file->read(buffer, 8) != 8 )
|
||||
{
|
||||
os::Printer::log("LOAD PNG: can't read file\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: can't read file (filesize < 8)", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Check if it really is a PNG file
|
||||
if( png_sig_cmp(buffer, 0, 8) )
|
||||
{
|
||||
os::Printer::log("LOAD PNG: not really a png\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: not really a png (wrong signature)", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -115,7 +115,7 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
NULL, (png_error_ptr)png_cpexcept_error, (png_error_ptr)png_cpexcept_warn);
|
||||
if (!png_ptr)
|
||||
{
|
||||
os::Printer::log("LOAD PNG: Internal PNG create read struct failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: Internal PNG create read struct failure", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -123,7 +123,7 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
png_infop info_ptr = png_create_info_struct(png_ptr);
|
||||
if (!info_ptr)
|
||||
{
|
||||
os::Printer::log("LOAD PNG: Internal PNG create info struct failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: Internal PNG create info struct failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_read_struct(&png_ptr, NULL, NULL);
|
||||
return 0;
|
||||
}
|
||||
@ -143,10 +143,10 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
|
||||
png_read_info(png_ptr, info_ptr); // Read the info section of the png file
|
||||
|
||||
u32 Width;
|
||||
u32 Height;
|
||||
s32 BitDepth;
|
||||
s32 ColorType;
|
||||
u32 Width=0;
|
||||
u32 Height=0;
|
||||
s32 BitDepth=0;
|
||||
s32 ColorType=0;
|
||||
{
|
||||
// Use temporary variables to avoid passing cast pointers
|
||||
png_uint_32 w,h;
|
||||
@ -158,9 +158,6 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
Height=h;
|
||||
}
|
||||
|
||||
if (!IImage::checkDataSizeLimit((size_t)Width* Height * (BitDepth/8)))
|
||||
png_cpexcept_error(png_ptr, "Image dimensions too large");
|
||||
|
||||
// Convert palette color to true color
|
||||
if (ColorType==PNG_COLOR_TYPE_PALETTE)
|
||||
png_set_palette_to_rgb(png_ptr);
|
||||
@ -223,15 +220,16 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
#endif
|
||||
}
|
||||
|
||||
ECOLOR_FORMAT colorFormat = ColorType==PNG_COLOR_TYPE_RGB_ALPHA ? ECF_A8R8G8B8 : ECF_R8G8B8;
|
||||
|
||||
if (!IImage::checkDataSizeLimit(IImage::getDataSizeFromFormat(colorFormat, Width, Height)))
|
||||
png_cpexcept_error(png_ptr, "Image dimensions too large");
|
||||
|
||||
// Create the image structure to be filled by png data
|
||||
video::IImage* image = 0;
|
||||
if (ColorType==PNG_COLOR_TYPE_RGB_ALPHA)
|
||||
image = new CImage(ECF_A8R8G8B8, core::dimension2d<u32>(Width, Height));
|
||||
else
|
||||
image = new CImage(ECF_R8G8B8, core::dimension2d<u32>(Width, Height));
|
||||
video::IImage* image = new CImage(colorFormat, core::dimension2du(Width, Height));
|
||||
if (!image)
|
||||
{
|
||||
os::Printer::log("LOAD PNG: Internal PNG create image struct failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: Internal PNG create image struct failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_read_struct(&png_ptr, NULL, NULL);
|
||||
return 0;
|
||||
}
|
||||
@ -240,7 +238,7 @@ IImage* CImageLoaderPng::loadImage(io::IReadFile* file) const
|
||||
RowPointers = new png_bytep[Height];
|
||||
if (!RowPointers)
|
||||
{
|
||||
os::Printer::log("LOAD PNG: Internal PNG create row pointers failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("LOAD PNG: Internal PNG create row pointers failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_read_struct(&png_ptr, NULL, NULL);
|
||||
delete image;
|
||||
return 0;
|
||||
|
@ -80,7 +80,7 @@ IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
|
||||
|
||||
if (header.mode != 3 || header.depth != 8)
|
||||
{
|
||||
os::Printer::log("Unsupported PSD color mode or depth.\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Unsupported PSD color mode or depth", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -93,7 +93,7 @@ IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
|
||||
#endif
|
||||
if (!file->seek(l, true))
|
||||
{
|
||||
os::Printer::log("Error seeking file pos to image resources.\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error seeking file pos to image resources", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -105,7 +105,7 @@ IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
|
||||
#endif
|
||||
if (!file->seek(l, true))
|
||||
{
|
||||
os::Printer::log("Error seeking file pos to layer and mask.\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error seeking file pos to layer and mask", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -117,7 +117,7 @@ IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
|
||||
#endif
|
||||
if (!file->seek(l, true))
|
||||
{
|
||||
os::Printer::log("Error seeking file pos to image data section.\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error seeking file pos to image data section", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -131,7 +131,7 @@ IImage* CImageLoaderPSD::loadImage(io::IReadFile* file) const
|
||||
|
||||
if (compressionType != 1 && compressionType != 0)
|
||||
{
|
||||
os::Printer::log("Unsupported psd compression mode.\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Unsupported psd compression mode", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -171,7 +171,7 @@ bool CImageLoaderPSD::readRawImageData(io::IReadFile* file, const PsdHeader& hea
|
||||
{
|
||||
if (!file->read(tmpData, sizeof(c8) * header.width * header.height))
|
||||
{
|
||||
os::Printer::log("Error reading color channel\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error reading color channel", file->getFileName(), ELL_ERROR);
|
||||
break;
|
||||
}
|
||||
|
||||
@ -247,7 +247,7 @@ bool CImageLoaderPSD::readRLEImageData(io::IReadFile* file, const PsdHeader& hea
|
||||
{
|
||||
delete [] tmpData;
|
||||
delete [] rleCount;
|
||||
os::Printer::log("Error reading rle rows\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error reading rle rows", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -263,7 +263,7 @@ bool CImageLoaderPSD::readRLEImageData(io::IReadFile* file, const PsdHeader& hea
|
||||
delete [] rleCount;
|
||||
delete [] buf;
|
||||
delete [] tmpData;
|
||||
os::Printer::log("Error reading rle rows\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Error reading rle rows", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -108,7 +108,7 @@ IImage* CImageLoaderTGA::loadImage(io::IReadFile* file) const
|
||||
|
||||
if (!IImage::checkDataSizeLimit((size_t)header.ImageWidth* header.ImageHeight * (header.PixelDepth/8)))
|
||||
{
|
||||
os::Printer::log("Image dimensions too large in file.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Image dimensions too large in file", file->getFileName(), ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -84,7 +84,7 @@ bool CImageWriterPNG::writeImage(io::IWriteFile* file, IImage* image,u32 param)
|
||||
NULL, (png_error_ptr)png_cpexcept_error, (png_error_ptr)png_cpexcept_warning);
|
||||
if (!png_ptr)
|
||||
{
|
||||
os::Printer::log("PNGWriter: Internal PNG create write struct failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("PNGWriter: Internal PNG create write struct failure", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -92,7 +92,7 @@ bool CImageWriterPNG::writeImage(io::IWriteFile* file, IImage* image,u32 param)
|
||||
png_infop info_ptr = png_create_info_struct(png_ptr);
|
||||
if (!info_ptr)
|
||||
{
|
||||
os::Printer::log("PNGWriter: Internal PNG create info struct failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("PNGWriter: Internal PNG create info struct failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_write_struct(&png_ptr, NULL);
|
||||
return false;
|
||||
}
|
||||
@ -141,7 +141,7 @@ bool CImageWriterPNG::writeImage(io::IWriteFile* file, IImage* image,u32 param)
|
||||
u8* tmpImage = new u8[image->getDimension().Height*lineWidth];
|
||||
if (!tmpImage)
|
||||
{
|
||||
os::Printer::log("PNGWriter: Internal PNG create image failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("PNGWriter: Internal PNG create image failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_write_struct(&png_ptr, &info_ptr);
|
||||
return false;
|
||||
}
|
||||
@ -175,7 +175,7 @@ bool CImageWriterPNG::writeImage(io::IWriteFile* file, IImage* image,u32 param)
|
||||
u8** RowPointers = new png_bytep[image->getDimension().Height];
|
||||
if (!RowPointers)
|
||||
{
|
||||
os::Printer::log("PNGWriter: Internal PNG create row pointers failure\n", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("PNGWriter: Internal PNG create row pointers failure", file->getFileName(), ELL_ERROR);
|
||||
png_destroy_write_struct(&png_ptr, &info_ptr);
|
||||
delete [] tmpImage;
|
||||
return false;
|
||||
|
@ -306,8 +306,8 @@ bool CIrrDeviceLinux::switchToFullscreen(bool reset)
|
||||
if (bestMode != -1)
|
||||
{
|
||||
os::Printer::log("Starting vidmode fullscreen mode...", ELL_INFORMATION);
|
||||
os::Printer::log("hdisplay: ", core::stringc(modes[bestMode]->hdisplay).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("vdisplay: ", core::stringc(modes[bestMode]->vdisplay).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("hdisplay", core::stringc(modes[bestMode]->hdisplay).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("vdisplay", core::stringc(modes[bestMode]->vdisplay).c_str(), ELL_INFORMATION);
|
||||
|
||||
XF86VidModeSwitchToMode(XDisplay, Screennr, modes[bestMode]);
|
||||
XF86VidModeSetViewPort(XDisplay, Screennr, 0, 0);
|
||||
@ -343,8 +343,8 @@ bool CIrrDeviceLinux::switchToFullscreen(bool reset)
|
||||
if (bestMode != -1)
|
||||
{
|
||||
os::Printer::log("Starting randr fullscreen mode...", ELL_INFORMATION);
|
||||
os::Printer::log("width: ", core::stringc(modes[bestMode].width).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("height: ", core::stringc(modes[bestMode].height).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("width", core::stringc(modes[bestMode].width).c_str(), ELL_INFORMATION);
|
||||
os::Printer::log("height", core::stringc(modes[bestMode].height).c_str(), ELL_INFORMATION);
|
||||
|
||||
XRRSetScreenConfig(XDisplay,config,DefaultRootWindow(XDisplay),bestMode,OldRandrRotation,CurrentTime);
|
||||
UseXRandR=true;
|
||||
@ -367,26 +367,26 @@ void IrrPrintXGrabError(int grabResult, const c8 * grabCommand )
|
||||
{
|
||||
if ( grabResult == GrabSuccess )
|
||||
{
|
||||
// os::Printer::log(grabCommand, ": GrabSuccess", ELL_INFORMATION);
|
||||
// os::Printer::log(grabCommand, "GrabSuccess", ELL_INFORMATION);
|
||||
return;
|
||||
}
|
||||
|
||||
switch ( grabResult )
|
||||
{
|
||||
case AlreadyGrabbed:
|
||||
os::Printer::log(grabCommand, ": AlreadyGrabbed", ELL_WARNING);
|
||||
os::Printer::log(grabCommand, "AlreadyGrabbed", ELL_WARNING);
|
||||
break;
|
||||
case GrabNotViewable:
|
||||
os::Printer::log(grabCommand, ": GrabNotViewable", ELL_WARNING);
|
||||
os::Printer::log(grabCommand, "GrabNotViewable", ELL_WARNING);
|
||||
break;
|
||||
case GrabFrozen:
|
||||
os::Printer::log(grabCommand, ": GrabFrozen", ELL_WARNING);
|
||||
os::Printer::log(grabCommand, "GrabFrozen", ELL_WARNING);
|
||||
break;
|
||||
case GrabInvalidTime:
|
||||
os::Printer::log(grabCommand, ": GrabInvalidTime", ELL_WARNING);
|
||||
os::Printer::log(grabCommand, "GrabInvalidTime", ELL_WARNING);
|
||||
break;
|
||||
default:
|
||||
os::Printer::log(grabCommand, ": grab failed with unknown problem", ELL_WARNING);
|
||||
os::Printer::log(grabCommand, "grab failed with unknown problem", ELL_WARNING);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -455,7 +455,7 @@ bool CIrrDeviceLinux::createWindow()
|
||||
}
|
||||
#ifdef _DEBUG
|
||||
else
|
||||
os::Printer::log("Visual chosen: ", core::stringc(static_cast<u32>(VisualInfo->visualid)).c_str(), ELL_DEBUG);
|
||||
os::Printer::log("Visual chosen", core::stringc(static_cast<u32>(VisualInfo->visualid)).c_str(), ELL_DEBUG);
|
||||
#endif
|
||||
|
||||
// create color map
|
||||
@ -1993,7 +1993,7 @@ Bool PredicateIsEventType(Display *display, XEvent *event, XPointer arg)
|
||||
{
|
||||
if ( event && event->type == *(int*)arg )
|
||||
{
|
||||
// os::Printer::log("remove event:", core::stringc((int)arg).c_str(), ELL_INFORMATION);
|
||||
// os::Printer::log("remove event", core::stringc((int)arg).c_str(), ELL_INFORMATION);
|
||||
return True;
|
||||
}
|
||||
return False;
|
||||
|
@ -203,7 +203,7 @@ CIrrDeviceSDL::CIrrDeviceSDL(const SIrrlichtCreationParameters& param)
|
||||
#endif
|
||||
SDL_INIT_NOPARACHUTE ) < 0)
|
||||
{
|
||||
os::Printer::log( "Unable to initialize SDL!", SDL_GetError());
|
||||
os::Printer::log("Unable to initialize SDL!", SDL_GetError());
|
||||
Close = true;
|
||||
}
|
||||
else
|
||||
@ -429,7 +429,7 @@ bool CIrrDeviceSDL::createWindow()
|
||||
}
|
||||
if ( !Screen )
|
||||
{
|
||||
os::Printer::log( "Could not initialize display!" );
|
||||
os::Printer::log("Could not initialize display!" );
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -618,7 +618,7 @@ bool CIrrDeviceSDL::run()
|
||||
else
|
||||
{
|
||||
irrevent.MouseInput.Event = irr::EMIE_RMOUSE_LEFT_UP;
|
||||
MouseButtonStates &= !irr::EMBSM_RIGHT;
|
||||
MouseButtonStates &= ~irr::EMBSM_RIGHT;
|
||||
}
|
||||
break;
|
||||
|
||||
@ -631,7 +631,7 @@ bool CIrrDeviceSDL::run()
|
||||
else
|
||||
{
|
||||
irrevent.MouseInput.Event = irr::EMIE_MMOUSE_LEFT_UP;
|
||||
MouseButtonStates &= !irr::EMBSM_MIDDLE;
|
||||
MouseButtonStates &= ~irr::EMBSM_MIDDLE;
|
||||
}
|
||||
break;
|
||||
|
||||
|
@ -153,6 +153,8 @@ namespace irr
|
||||
virtual void setPosition(s32 x, s32 y) IRR_OVERRIDE
|
||||
{
|
||||
SDL_WarpMouse( x, y );
|
||||
CursorPos.X = x;
|
||||
CursorPos.Y = y;
|
||||
}
|
||||
|
||||
//! Returns the current position of the mouse cursor.
|
||||
@ -200,15 +202,6 @@ namespace irr
|
||||
#else
|
||||
CursorPos.X = Device->MouseX;
|
||||
CursorPos.Y = Device->MouseY;
|
||||
|
||||
if (CursorPos.X < 0)
|
||||
CursorPos.X = 0;
|
||||
if (CursorPos.X > (s32)Device->Width)
|
||||
CursorPos.X = Device->Width;
|
||||
if (CursorPos.Y < 0)
|
||||
CursorPos.Y = 0;
|
||||
if (CursorPos.Y > (s32)Device->Height)
|
||||
CursorPos.Y = Device->Height;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -458,7 +458,7 @@ void CIrrMeshFileLoader::skipSection(io::IXMLReader* reader, bool reportSkipping
|
||||
{
|
||||
#ifdef _DEBUG
|
||||
if (reportSkipping)
|
||||
os::Printer::log("irrMesh unknown element:", core::stringc(reader->getNodeName()).c_str());
|
||||
os::Printer::log("irrMesh unknown element", core::stringc(reader->getNodeName()).c_str());
|
||||
#endif
|
||||
|
||||
++tagCounter;
|
||||
|
@ -1945,7 +1945,7 @@ void CLWOMeshFileLoader::readMat(u32 size)
|
||||
default:
|
||||
{
|
||||
#ifdef LWO_READER_DEBUG
|
||||
os::Printer::log("LWO loader: skipping ", core::stringc((char*)&uiType, 4));
|
||||
os::Printer::log("LWO loader: skipping", core::stringc((char*)&uiType, 4));
|
||||
#endif
|
||||
File->seek(subsize, true);
|
||||
size -= subsize;
|
||||
|
@ -199,7 +199,7 @@ bool CMD2MeshFileLoader::loadFile(io::IReadFile* file, CAnimatedMeshMD2* mesh)
|
||||
if (!file->read(textureCoords, sizeof(SMD2TextureCoordinate)*header.numTexcoords))
|
||||
{
|
||||
delete[] textureCoords;
|
||||
os::Printer::log("MD2 Loader: Error reading TextureCoords.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("MD2 Loader: Error reading TextureCoords", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -221,7 +221,7 @@ bool CMD2MeshFileLoader::loadFile(io::IReadFile* file, CAnimatedMeshMD2* mesh)
|
||||
delete[] triangles;
|
||||
delete[] textureCoords;
|
||||
|
||||
os::Printer::log("MD2 Loader: Error reading triangles.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("MD2 Loader: Error reading triangles", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -242,7 +242,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr + ((sizeof(MS3DVertex) - MS3DVERTEX_NUM_PAD_BYTES) * numVertices) > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
for (u16 tmp=0; tmp<numVertices; ++tmp)
|
||||
@ -273,7 +273,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr + ((sizeof(MS3DTriangle) - MS3DTRIANGLE_NUM_PAD_BYTES) * numTriangles) > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
for (u16 tmp=0; tmp<numTriangles; ++tmp)
|
||||
@ -349,7 +349,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -390,7 +390,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -452,7 +452,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -479,7 +479,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -529,7 +529,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -569,7 +569,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -625,7 +625,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@ -657,7 +657,7 @@ bool CMS3DMeshFileLoader::load(io::IReadFile* file)
|
||||
if (pPtr > buffer+fileSize)
|
||||
{
|
||||
delete [] buffer;
|
||||
os::Printer::log("Loading failed. Corrupted data found.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Loading failed. Corrupted data found", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
@ -708,38 +708,45 @@ IMesh* CMeshManipulator::createMeshUniquePrimitives(IMesh* mesh) const
|
||||
// not yet 32bit
|
||||
IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
{
|
||||
SMesh* clone = new SMesh();
|
||||
clone->BoundingBox = mesh->getBoundingBox();
|
||||
SMesh* meshClone = new SMesh();
|
||||
meshClone->BoundingBox = mesh->getBoundingBox();
|
||||
|
||||
core::array<u16> redirects;
|
||||
|
||||
for (u32 b=0; b<mesh->getMeshBufferCount(); ++b)
|
||||
{
|
||||
const IMeshBuffer* const mb = mesh->getMeshBuffer(b);
|
||||
const u32 vertexCount = mb->getVertexCount();
|
||||
// reset redirect list
|
||||
redirects.set_used(mb->getVertexCount());
|
||||
redirects.set_used(vertexCount);
|
||||
|
||||
const u16* indices = 0;
|
||||
u32 indexCount = 0;
|
||||
const video::E_INDEX_TYPE indexType = mb->getIndexType();
|
||||
const u16* indices = mb->getIndices();
|
||||
const u32 indexCount = mb->getIndexCount();
|
||||
core::array<u16>* outIdx = 0;
|
||||
|
||||
if ( indexType == video::EIT_32BIT )
|
||||
{
|
||||
IMeshBuffer* buffer = mb->createClone();
|
||||
buffer->setBoundingBox(mb->getBoundingBox());
|
||||
buffer->getMaterial() = mb->getMaterial();
|
||||
meshClone->addMeshBuffer(buffer);
|
||||
buffer->drop();
|
||||
continue; // TODO: handle 32-bit buffers beside copying them
|
||||
}
|
||||
|
||||
switch(mb->getVertexType())
|
||||
{
|
||||
case video::EVT_STANDARD:
|
||||
{
|
||||
SMeshBuffer* buffer = new SMeshBuffer();
|
||||
buffer->BoundingBox = mb->getBoundingBox();
|
||||
buffer->setBoundingBox(mb->getBoundingBox());
|
||||
buffer->Material = mb->getMaterial();
|
||||
clone->addMeshBuffer(buffer);
|
||||
meshClone->addMeshBuffer(buffer);
|
||||
buffer->drop();
|
||||
|
||||
video::S3DVertex* v =
|
||||
(video::S3DVertex*)mb->getVertices();
|
||||
video::S3DVertex* v = (video::S3DVertex*)mb->getVertices();
|
||||
|
||||
u32 vertexCount = mb->getVertexCount();
|
||||
|
||||
indices = mb->getIndices();
|
||||
indexCount = mb->getIndexCount();
|
||||
outIdx = &buffer->Indices;
|
||||
|
||||
buffer->Vertices.reallocate(vertexCount);
|
||||
@ -771,18 +778,14 @@ IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
case video::EVT_2TCOORDS:
|
||||
{
|
||||
SMeshBufferLightMap* buffer = new SMeshBufferLightMap();
|
||||
buffer->BoundingBox = mb->getBoundingBox();
|
||||
buffer->setBoundingBox(mb->getBoundingBox());
|
||||
buffer->Material = mb->getMaterial();
|
||||
clone->addMeshBuffer(buffer);
|
||||
meshClone->addMeshBuffer(buffer);
|
||||
buffer->drop();
|
||||
|
||||
video::S3DVertex2TCoords* v =
|
||||
(video::S3DVertex2TCoords*)mb->getVertices();
|
||||
|
||||
u32 vertexCount = mb->getVertexCount();
|
||||
|
||||
indices = mb->getIndices();
|
||||
indexCount = mb->getIndexCount();
|
||||
outIdx = &buffer->Indices;
|
||||
|
||||
buffer->Vertices.reallocate(vertexCount);
|
||||
@ -814,18 +817,13 @@ IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
case video::EVT_TANGENTS:
|
||||
{
|
||||
SMeshBufferTangents* buffer = new SMeshBufferTangents();
|
||||
buffer->BoundingBox = mb->getBoundingBox();
|
||||
buffer->setBoundingBox(mb->getBoundingBox());
|
||||
buffer->Material = mb->getMaterial();
|
||||
clone->addMeshBuffer(buffer);
|
||||
meshClone->addMeshBuffer(buffer);
|
||||
buffer->drop();
|
||||
|
||||
video::S3DVertexTangents* v =
|
||||
(video::S3DVertexTangents*)mb->getVertices();
|
||||
video::S3DVertexTangents* v = (video::S3DVertexTangents*)mb->getVertices();
|
||||
|
||||
u32 vertexCount = mb->getVertexCount();
|
||||
|
||||
indices = mb->getIndices();
|
||||
indexCount = mb->getIndexCount();
|
||||
outIdx = &buffer->Indices;
|
||||
|
||||
buffer->Vertices.reallocate(vertexCount);
|
||||
@ -860,7 +858,7 @@ IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
break;
|
||||
}
|
||||
|
||||
// Clean up any degenerate tris
|
||||
// set indices for new buffer
|
||||
core::array<u16> &Indices = *outIdx;
|
||||
Indices.clear();
|
||||
Indices.reallocate(indexCount);
|
||||
@ -873,6 +871,7 @@ IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
|
||||
bool drop = false;
|
||||
|
||||
// Clean up any degenerate tris
|
||||
if (a == b || b == c || a == c)
|
||||
drop = true;
|
||||
|
||||
@ -885,8 +884,9 @@ IMesh* CMeshManipulator::createMeshWelded(IMesh *mesh, f32 tolerance) const
|
||||
Indices.push_back(c);
|
||||
}
|
||||
}
|
||||
// indexCount-Indices.size() vertices got welded for this meshbuffer
|
||||
}
|
||||
return clone;
|
||||
return meshClone;
|
||||
}
|
||||
|
||||
|
||||
|
@ -250,7 +250,7 @@ IAnimatedMesh* COBJMeshFileLoader::createMesh(io::IReadFile* file)
|
||||
v.Pos = vertexBuffer[Idx[0]];
|
||||
else
|
||||
{
|
||||
os::Printer::log("Invalid vertex index in this line:", wordBuffer.c_str(), ELL_ERROR);
|
||||
os::Printer::log("Invalid vertex index in this line", wordBuffer.c_str(), ELL_ERROR);
|
||||
delete [] buf;
|
||||
return 0;
|
||||
}
|
||||
|
@ -112,7 +112,7 @@ bool CQ3LevelMesh::loadFile(io::IReadFile* file)
|
||||
( header.strID != 0x50534252 || header.version != 1 ) // RBSP, starwars jedi, sof
|
||||
)
|
||||
{
|
||||
os::Printer::log("Could not load .bsp file, unknown header.", file->getFileName(), ELL_ERROR);
|
||||
os::Printer::log("Could not load .bsp file, unknown header", file->getFileName(), ELL_ERROR);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -438,7 +438,7 @@ IAnimatedMesh* CSceneManager::getMesh(const io::path& filename, const io::path&
|
||||
io::IReadFile* file = FileSystem->createAndOpenFile(filename);
|
||||
if (!file)
|
||||
{
|
||||
os::Printer::log("Could not load mesh, because file could not be opened: ", filename, ELL_ERROR);
|
||||
os::Printer::log("Could not load mesh, because file could not be opened", filename, ELL_ERROR);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -2377,7 +2377,7 @@ bool CSceneManager::loadScene(io::IReadFile* file, ISceneUserDataSerializer* use
|
||||
ret = SceneLoaderList[i]->loadScene(file, userDataSerializer, rootNode);
|
||||
|
||||
if (!ret)
|
||||
os::Printer::log("Could not load scene file, perhaps the format is unsupported: ", file->getFileName().c_str(), ELL_ERROR);
|
||||
os::Printer::log("Could not load scene file, perhaps the format is unsupported", file->getFileName().c_str(), ELL_ERROR);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -117,7 +117,6 @@ void CSceneNodeAnimatorCameraFPS::animateNode(ISceneNode* node, u32 timeMs)
|
||||
|
||||
if (firstUpdate)
|
||||
{
|
||||
camera->updateAbsolutePosition();
|
||||
if (CursorControl )
|
||||
{
|
||||
CursorControl->setPosition(0.5f, 0.5f);
|
||||
@ -151,6 +150,7 @@ void CSceneNodeAnimatorCameraFPS::animateNode(ISceneNode* node, u32 timeMs)
|
||||
LastAnimationTime = timeMs;
|
||||
|
||||
// Update rotation
|
||||
camera->updateAbsolutePosition();
|
||||
core::vector3df target = (camera->getTarget() - camera->getAbsolutePosition());
|
||||
core::vector3df relativeRotation = target.getHorizontalAngle();
|
||||
|
||||
|
@ -1104,27 +1104,27 @@ void CSkinnedMesh::finalize()
|
||||
|
||||
if ( redundantPosKeys > 0 )
|
||||
{
|
||||
os::Printer::log("Skinned Mesh - redundant position frames kicked:", core::stringc(redundantPosKeys).c_str(), ELL_DEBUG);
|
||||
os::Printer::log("Skinned Mesh - redundant position frames kicked", core::stringc(redundantPosKeys).c_str(), ELL_DEBUG);
|
||||
}
|
||||
if ( unorderedPosKeys > 0 )
|
||||
{
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted position frames kicked:", irr::core::stringc(unorderedPosKeys).c_str(), irr::ELL_DEBUG);
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted position frames kicked", irr::core::stringc(unorderedPosKeys).c_str(), irr::ELL_DEBUG);
|
||||
}
|
||||
if ( redundantScaleKeys > 0 )
|
||||
{
|
||||
os::Printer::log("Skinned Mesh - redundant scale frames kicked:", core::stringc(redundantScaleKeys).c_str(), ELL_DEBUG);
|
||||
os::Printer::log("Skinned Mesh - redundant scale frames kicked", core::stringc(redundantScaleKeys).c_str(), ELL_DEBUG);
|
||||
}
|
||||
if ( unorderedScaleKeys > 0 )
|
||||
{
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted scale frames kicked:", irr::core::stringc(unorderedScaleKeys).c_str(), irr::ELL_DEBUG);
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted scale frames kicked", irr::core::stringc(unorderedScaleKeys).c_str(), irr::ELL_DEBUG);
|
||||
}
|
||||
if ( redundantRotationKeys > 0 )
|
||||
{
|
||||
os::Printer::log("Skinned Mesh - redundant rotation frames kicked:", core::stringc(redundantRotationKeys).c_str(), ELL_DEBUG);
|
||||
os::Printer::log("Skinned Mesh - redundant rotation frames kicked", core::stringc(redundantRotationKeys).c_str(), ELL_DEBUG);
|
||||
}
|
||||
if ( unorderedRotationKeys > 0 )
|
||||
{
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted rotation frames kicked:", irr::core::stringc(unorderedRotationKeys).c_str(), irr::ELL_DEBUG);
|
||||
irr::os::Printer::log("Skinned Mesh - unsorted rotation frames kicked", irr::core::stringc(unorderedRotationKeys).c_str(), irr::ELL_DEBUG);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -265,7 +265,7 @@ namespace scene
|
||||
{
|
||||
if ((filesize-file->getPos())/bytesPerPixel>(size_t)(width*width))
|
||||
{
|
||||
os::Printer::log("Error reading heightmap RAW file", "File is too small.");
|
||||
os::Printer::log("Error reading heightmap RAW file: File is too small.");
|
||||
return false;
|
||||
}
|
||||
TerrainData.Size = width;
|
||||
|
@ -463,7 +463,7 @@ bool CWGLManager::activateContext(const SExposedVideoData& videoData, bool resto
|
||||
{
|
||||
if (!wglMakeCurrent((HDC)PrimaryContext.OpenGLWin32.HDc, (HGLRC)PrimaryContext.OpenGLWin32.HRc))
|
||||
{
|
||||
os::Printer::log("Render Context switch failed.");
|
||||
os::Printer::log("Render Context switch (back to main) failed.");
|
||||
return false;
|
||||
}
|
||||
CurrentContext=PrimaryContext;
|
||||
|
@ -491,7 +491,7 @@ bool CXMeshFileLoader::parseDataObject()
|
||||
|
||||
// parse specific object
|
||||
#ifdef _XREADER_DEBUG
|
||||
os::Printer::log("debug DataObject:", objectName.c_str(), ELL_DEBUG);
|
||||
os::Printer::log("debug DataObject", objectName.c_str(), ELL_DEBUG);
|
||||
#endif
|
||||
|
||||
if (objectName == "template")
|
||||
@ -848,7 +848,7 @@ bool CXMeshFileLoader::parseDataObjectMesh(SXMesh &mesh)
|
||||
}
|
||||
|
||||
#ifdef _XREADER_DEBUG
|
||||
os::Printer::log("debug DataObject in mesh:", objectName.c_str(), ELL_DEBUG);
|
||||
os::Printer::log("debug DataObject in mesh", objectName.c_str(), ELL_DEBUG);
|
||||
#endif
|
||||
|
||||
if (objectName == "MeshNormals")
|
||||
|
@ -39,6 +39,8 @@ namespace os
|
||||
static void print(const c8* message, ELOG_LEVEL ll = ELL_INFORMATION);
|
||||
static void log(const c8* message, ELOG_LEVEL ll = ELL_INFORMATION);
|
||||
static void log(const wchar_t* message, ELOG_LEVEL ll = ELL_INFORMATION);
|
||||
|
||||
// The string ": " is added between message and hint
|
||||
static void log(const c8* message, const c8* hint, ELOG_LEVEL ll = ELL_INFORMATION);
|
||||
static void log(const c8* message, const io::path& hint, ELOG_LEVEL ll = ELL_INFORMATION);
|
||||
static ILogger* Logger;
|
||||
|
@ -1,4 +1,4 @@
|
||||
Tests finished. 72 tests of 72 passed.
|
||||
Compiled as DEBUG
|
||||
Test suite pass at GMT Sat May 14 18:16:57 2022
|
||||
|
||||
Tests finished. 72 tests of 72 passed.
|
||||
Compiled as DEBUG
|
||||
Test suite pass at GMT Thu Sep 15 20:10:06 2022
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user